Biologisk markkartering
2009-2015
Jordburna patogener kan orsaka stora skördeförluster. Klumprotsjuka och ärtrotröta är exempel på
sjukdomar som producerar vilsporer med lång överlevnad, 10-20 år, i marken.
Inom BioSoM (Biological Soil Mapping), som är ett tematiskt forskningsprogram vid NL-fakulteten
på SLU, är målet är att utveckla ny service till lantbruket för att bestämma förekomsten av
jordburna patogener.
SLU ansvarar för det vetenskapliga arbetet och utveckling av råd för att optimera växtföljd och
odlingsåtgärder i samarbete med ett flera intressenter från näringslivet.
Provtagning
Representativ provtagning är
förutsättningen för bra kartering
av markburna patogener.
patogener
Bestämning med PCR
Artspecifika DNA sekvenser
används för att bestämma
förekomst och mängd av patogen.
patogen
Karta och management
Resultaten presenteras på en karta så att
åtgärder kan varieras inom fält. Kartdatan
kan integreras med precisionsodlingsprecisionsodlings
teknik för platsspecifika insatser styrda
med GPS.
Biologisk grundkunskap
Säker bestämning och effektiv
bekämpning kräver kunskap om
patogenens biologi, exempelvis hur
vilsporer fungerar.
Markkemi och patogen
Markkemiska förhållanden kan
påverka förekomsten och sjukdomsutvecklingen.
P. brassicae versus pH
P. brassicae fg/ g soil
Jord och växtstudier
Biotest och fältförsök utförs för
att fastställa sambandet mellan
förekomst av p
patogen
g
och skada
på gröda.
60000
50000
40000
30000
20000
10000
0
5,4
Klumprotsjuka
Ärtrotröta
Bomullsmögel
Precisionsodling och pedometri
Institutionen för mark och miljö
SLU, Box 234
532 23 Skara
Phytophthora pisi (SaraHosseini)
5,8
6,0
6,2
pH-value
6,4
6,6
Rotbrand, sockerbeta
Finansiärer och näringslivsintressenter
Kontaktpersoner
Programansvarig
Anders Jonsson
[email protected]
+46 (0)70558870
Kransmögel
5,6
Forskare i BioSoM
Ann-Charlotte
Ann
Charlotte Wallenhammar
Arne Schwelm
Christina Dixelius
Charlotta Almquist
Fredrik Heyman
Katarzyna Marzec-Schmidt
Mats Söderström
Kontakt via mail: [email protected]
(http://www.slu.se/mark/biosom)
SL-Stiftelsen
Biologisk markkartering – Integrerad analys av jordbundna växtsjukdomar och markkemi
(BioSoM I )
Det övergripande syftet med är att bygga upp grundläggande kunskap om jordburna patogener
och de faktorer som påverkar deras utveckling och skadepåverkan. Slutmålet, visionen, är
karteringstjänst som kan nyttjas av lantbrukare för att optimera sin platsspecifika växtodling,
en sk ”Biologisk markkartering”.
Forskningsprogrammet ”Biologisk markkartering” är ett sk TEMA-forskningsprogram vid
NL-fakulteten, SLU. Avsikten med programmet var att det skulle pågå i 3+3 år efter en
utvärdering efter den första tre-årsperioden. Fas två av BioSoM är nu också beviljat och löper
under 2013-2015.
Traditionellt har diagnos och prognos av jordburna växtpatogener, dvs mikroorganismer som
utnyttjar jorden för överlevnad i väntan på lämplig växt att angripa, har varit mycket
begränsade i Sverige och i övriga världen. Den har främst bestått av resurskrävande biotester i
växthus. I Australien har emellertid under de senaste 10 åren utvecklats en världsunik service
där man med DNA-teknik bestämmer förekomsten av några för Australien viktiga jordbundna
patogener i jordprov. De jordburna växtpatogenerna sprids vanligtvis med sk sporer eller
sklerotier eller mycel i jorden. De infekterar roten och tillväxer till inuti växten, vilken i
många fall försvårar en korrekt diagnos. Många överlever i fält med sk
vilokroppar/vilostrukturer (sklerotier) som har olika grad av överlevnad beroende
omständigheter i marken som jordart, grödval och väderlek. I Sverige har vi avsevärda
problem med främst klumprotsjuka och kransmögel i oljeväxter, ”rotröta” hos ärter och i
rödklöver. Problemen kan vara stora och är främst kopplade till olämplig växtföljd. De kan
endast reduceras genom att utesluta mottagliga växter under 5-15 år. I framtidens växtodling,
ställs stora krav på att effektiv fånga solljus till höga skördar med rätt kvalitet. Kombinationen
av precisionsodlingsteknik, (GPS-styrning och geografiska informationssystem, GIS) samt
rimligt dyra DNA-baserade analyser av markburna patogener öppnar ett nytt kunskapsfält,
som vi valt att kalla ”Biologisk markkartering”. Utifrån en bestämning av förekomst av
jordburna patogener kan förbättra valet av gröda, odlingsåtgärder och avsevärt öka den
platsspecifika anpassningen i växtodlingen. Eftersom det är känt att förekomsten av patogener
kan variera i fält beroende på biotiska och abiotiska faktorer och att flertalet av patogenerna är
långlivade i marken är målet att efter en kartering bygga modeller och prognoser som visar
när och var det åter är aktuellt att odla en mottaglig gröda eller när en resistent sort måste
användas samt hur näringstillförseln skall optimeras för att reducera angrepp. Extra
problematiskt med dessa sjukdomar nu när intresset för och behovet av inhemskt producerad
biodrivmedel och proteinfoder ökar i EU. Trots att odlingen varit liten under 2000-talets
inledning så uppmärksammas redan nu avsevärda problem med sjukdomar kopplade till
växtföljd i våra oljeväxter och ärter. För oljeväxteret gäller det bomullsmögel (Sclerotinia
sclerotiorum), kransmögel (Verticillium longisporum) och klumprotsjuka (Plasmodiophora
brassicae). Dessa sjukdomar kan även angripa andra växter inklusive vissa ogräs förutom att
de kan överleva i marken i väntan på nästa mottagliga gröda
För att nå EUs mål att öka självförsörjningsgraden av protein ligger det i dagsläget närmast
tills hands att försöka öka ärtodlingen i Sverige. Uppförökning av markburna
växtföljdsjukdomar som ärtrotröta (Aphanomyces euteiches) är redan ett stort problem för
konservärtsindustrin och många ekologiska odlare. Andra patogener angriper också ärtgrödan
t.ex. Fusarium oxysporum f. sp pisi som orsakar vissnesjuka respektive F. solani f. sp pisi
som orsakar rotröta samt Pythium spp. Den senare orsakar skador på rot och groddplanta. En
rutinmässig kartering skulle förenkla identifieringen av lämpliga fält för oljeväxtodling
liksom för konservärts- och foderärtsodling såväl för konventionella som ekologisk.
Rödklöver är den viktigaste baljväxten i svensk vallfoderproduktion och den intar en central
roll i odlingssystemet genom den biologiska kvävefixeringen. Uthålligheten är sviktande och
bestånden blir ofta angripna av rotröta redan insåningsåret. Rotröta orsakas av ett komplex av
patogener; Fusarium avenaceum, F. culmorum, Cylindrocarpon destructans och Phoma
exigua. Rödklöverns uthållighet påverkas också av klöverröta (Sclerotinia trifoliorum).
Senare tidsforskning i bland annat BioSoM visar att stora skador orsakas av
rotrötesvamparna!
En kartering av förekomst av patogener i grödor som vall, oljeväxt och ärt blir också ett
viktigt verktyg för att följa effekterna av förändringar i klimatet. I de förväntade
klimatscenariosen för Norden med mildare och fuktigare klimat, längre vegetationsperioder
och reducerade perioder av frost och tjäle finns förväntningar på förändringar i patogentryck
och sammansättning (se exempelvis Fanan, http://www2.vpe.slu.se/fanan_vpe_slu/fanan.html). En
framtida återkommande mark-biologisk kartering blir alltså viktig för att följa vad som händer
och ställa prognoser och den borde kunna bli en viktig del i den platsspecifika produktionen
Målsättningen med BioSoM-program var alltså att lägga den vetenskapliga grunden för en
praktisk användbar ”biologisk markkarteringstjänst” som skall kunna utnyttjas av lantbrukare
för att optimera sin växtodling. Detta har skett genom:
- att utveckla och validera DNA-baserade metoder för effektiv ras- och artbestämning
samt kvantitativ bestämning av markburna patogener i svensk jord. Främst för
klumprotsjuka och ärtrotröta samt bomullsmögel. Analysen av DNA från organismen
som orsakar klumprotsjuka, Plasmodiphora brassicae, är nu 2013 kommersiellt
tillgänglig sedan några år.
- att öka den biologiska kunskapen om bildandet av vilosporer/vilokroppar och deras
överlevnad samt genom att inleda arbetet med sekvensering av hela P. brassicae
genetiska material. Hösten 2012 blev vi först i världen med att kunna presentera ett
första förslag till ”alla gener och DNA” i Plasmodiphora brassicae !!
- att utarbeta och validera provtagningsrutiner och innefattande bland annat en
”aseptisk” homogenisering av jordprover inför DNA-extraktion. Det finns en de facto
rutin för hantering av prover, från “aseptisk” provtagning till PCR-protokoll. En film
som beskriver den praktiska provtagningen har också lagts ut på Youtube.
- att utvärdera samband och påverkan mellan förekomst av infektiösa patogener och
markparametrar som pH, innehåll av makro- och mikronäringsämnen, lerhalt mm. Det
har bland annat visats att bor har hämmande effekt på ärtrotröta i ärtor och
klumprotssjuka i raps och att förekomsten i enskilda fält samvariera med pH-värdet i
marken.
- att ett arbete har inletts med en pilotstudie i samverkan med Högsklan i Skövde för att
öka förståelsen av utformningen av presentationsrutiner för markbiologiska parametrar
betydelse för implementering och upptag hos kunder (rådgivare/lantbrukare m fl) och
validera lämpliga till exempel pedagogiska ”GIS-kartor” på gårds, fält eller
regionnivå. Samarbetet har kommit gång mycket väl. En gemensam forskarstuderande och ansökan till FORMAs för fördjupning och utveckling av nya
rådgivningskoncept har inletts under BioSoM I och kommer att utvecklas under fas 2
av BioSoM
Vidare har kunskapen om en ny patogenen på ärt (och åkerböna) fördjupats och en ny metod
för att bedöma angrep av rotdödare har utveckalts. Mycket intressant observationer har gjorts
kring förloppet när bomullsmögel infekterar en rapsgröda. Angrepp av rotröta i klöver har för
första gången dokumenterats med hjälp av DNA-metoder och kunskapen om de gener som är
inblandade i sklerotiebildning hos Verticillium har fördjupats liksom förståelsen av resistens
hos sockerbetor mot rhizoctonia-svampen.
För ytterligare detaljer hänvisas till (http://www.slu.se/mark/biosom) där också en pdf-version
av slutrapporten för BioSoM I kan laddas ner.
Partnerskap Alnarp
Jordbruks- & 2012-03-03
Trädgårdskonferensen
BioSoM
Tema ”framtida möjligheter inom de gröna näringarna”
Anders Källström, VD LRF:
map the soil-borne
SLUs möjligheter att utveckla inriktningen mot
pathogens
”Framtidens Lantbruk”.
”Vilken är LRFs roll i framtida produktionsmöjligheter”.
Lisa Sennerby Forsse, Rektor SLU:
Anders Hildeman, Global Forestry Manager IKEA:
IKEAS väg från skogsråvara till heminredningsdetaljer.
Fredrik Javensköld, Skånemejerier:
Skånemejeriers strategi mot en hållbar livsmedelsproduktion.
Rune Andersson, professor SLU:
Tankar kring ”Framtidens Lantbruk står på flera ben”.
Implementation
• GIS and extension
• Precision agriculture
« Läs mer om samtliga programpunkter och
anmäl & Interaction
Prediction
dig senast 28 februari via QR-koden till vänster
• Disease severity
eller webbsidan: http://partnerskapalnarp.slu.se
• Crop management
Detection & Biology
• qPCR
STORA AULAN, ALNARPSGÅRDEN
• PathotypesTORSDAGEN DEN 3 MARS
• Sclerotia
Sampling
Program report phase I
2009 – 2012
BioSoM
– map the soil-borne pathogens
BioSoM (Biological Soil ­Mapping) is
a thematic research programme that aims to
provide scientific support to a new soil-borne
pathogen detection service for farmers. This
in turn would improve cropping reliability
and could form an essential part of management schemes to optimise crop production.
Soil-borne plant pathogens can be a major
limitation in the production of marketable
yields and are adapted to grow and survive
in the bulk soil, causing root disease. These
pathogens include fungi, protists (supergroup
Rhizaria), bacteria and nematodes.
At the onset of the BioSoM project, the
practical use of analyses to detect the presence of soil-borne pathogens was restricted
to bioassay tests for a few pathogens. Pathogens survive in the soil by resistant propagules such as sclerotia, chlamydospores, resting
spores, thick-walled conidia or hyphae, or
survive in plant roots and crop residues.
Most soil-borne fungi and protists attack
young juvenile roots as opposed to secondary
roots. After the roots have been killed, the
pathogen reproduces and forms spores within
the root tissue. Mycelium can continue to
spread up the root, internally or externally, or
can spread to other roots.
Late above ground symptoms
These diseases are difficult to diagnose from
aboveground symptoms, since they may be
vague and similar to symptoms caused by
drought, stress and lack of nutrients. As a
consequence of multiplication and reproduction of pathogens, the diseases increase over
time. The lifetime of resting spores is often
long, 10–20 years, and the time of survival
2
depends on soil conditions, crop rotation etc.
Soil-borne pathogens are confined within
the soil, although some pathogens on infected crop debris or soil can be spread by wind.
Some soil-borne pathogens produce airborne
sexual spores that are spread by the wind.
Pathogens can also move above the ground
with irrigation water or rain runoff.
The long persistence of pathogens and the
distribution pattern make it profitable and relevant to develop mapping of the distribution
of disease infestation for several soil-borne
pathogens. In Sweden we have considerable
problems with pathogens such as club root in
cruciferous plants, root rot in pea, Verticillium wilt and Sclerotinia stem rot in oilseed
rape and root rot in red clover.
New technology breakthroughs
In future agriculture with high expectations
for increasing yields of good quality in a changing climate, the level of pathogen infestation must be effectively monitored in order to
employ adequate crop management schemes.
With technologies used in Precision Agriculture such as Global Positioning System (GPS)
and Geographic Information Systems (GIS), it
is possible to keep track of and present infestation levels of soil-borne pathogens in a way
that is easy to grasp.
New detection methods based on DNA
technologies make it possible to specifically
estimate infestation levels of organisms in the
soil. The rapidly growing possibilities to map
DNA sequences in the genome of organisms
might also lead to new ways of management
of soil and breeding of crops to reduce the effects of pathogens. Linked to such progress
in knowledge and technology are steps of implementation into practical use. The chain of
innovation must not be broken from laboratory to farmer if the potential of the new tools
is to be exploited.
Objectives of the programme
The overall objectives of the programme are
to provide scientific background and to design procedures for a mapping routine of soilborne pathogens that is of use in optimising
crop rotations in Sweden. The work is divided
into the following areas:
• Development and validation of PCR-­
based detection methods for soil-borne
pathogens;
• Development of sampling methods and
routines for presentation of the distribution
of pathogen infestation. Correlation of infestation level with soil characteristics:
• Increased knowledge of pathogen biology, forecasting economic impact of disease, and investigations of the effect of crop management
on plant pathogens:
• Initiation and advancement of the implementation process in agriculture.
The programme has during phase I been divided into five work packages (WP)
WP 1a
Sampling and detection
WP 1b
Phytophthora sp. on pea
WP 2
Forecast - based on bioassay and field trials
WP 3a
Pathogen biology – resting structures and applied
genomics
WP 3b
Beta vulgaris – Rhizoctonia solani interaction
WP 4
WP 5
Soil characteristics and
infestation of pathogen
Implementation and use in R&D and practice
Programme management and funding
The programme is funded by the Faculty
of Natural Resources and Agricultural Sciences, SLU (50% of funding), and by stakeholders and their foundations: Foundation of Swedish Farmers Research (SLF),
Västsvenska Lantmännen (VL) and Skånska
Lantmännen (SL) Foundations, Swedish
Seed and Oilseed Growers Research Foundation (SSO), Eurofins Food and Agro Testing Sweden AB (Lidköping), Scanbi Diagnostics AB (Alnarp), Findus R&D (Bjuv),
Rural Economy and Agricultural Society/
HS Konsult AB (Örebro) and in later phases
during 2011 and 2012 Lantmännen SWSeed,
Nordic Beet Research (NBR) at Borgeby,
Skåne, and Syngenta Seed AB, Landskrona.
The large number of stakeholders reflects
the extraordinary interest in soil-borne pathogens and associated research questions
highlighted in the programme.
A Steering Committee has been appointed to ensure that the programme is carried
out in accordance with the intentions in the
programme plan and the policy guidelines
for NL Faculty thematic programmes. NL
Faculty and each external stakeholder are
entitled to appoint one committee member each. The Programme Director has appointed a Programme Management Group,
­responsible for assisting in managing the
programme.
3
A broad scope of pathogens
The first phase of the ­programme
has run from May 2009 to end of 2012.
Pathogens that were studied were: Plasmodiophora brassicae (clubroot), Verticillium
longisporum (Verticillium wilt), Sclerotinia
sclerotiorum (stem rot), Phytophthora species
on pea (pea rot), Aphanomyces euteiches (pea
rot root), Fusarium avenaceum/Phoma exigua/Cylindrocarpon destructans (clover root
rot), Gaeumannomyces graminis on wheat
(take-all), Aphanomyces cochlioides (rot root
sugar beet), Rhizoctonia solani (Rhizoctonia
root rot, sugar beet) (Table 1).
This programme builds on new collaborations, and the majority of the work in the
workpackages started from scratch with the
recruitment of new personnel. Thus, some of
intended outcomes will be visible first in phase
II, although one of the methods, detection of P.
brassicae has been introduced in practice by
one of the stakeholders. (Table 1)
Sampling and detection
A new method to mill and homogenise soil
samples has been developed. A soil sample
of approximately 0.5–1.0 kg is poured into a
plastic tin together with iron balls and screw
nuts, and processed in a Skandex paintmixer.
The sample is then passed through a 2-mm
sieve before being stored. This method reduces the risk of contamination at milling.
A de facto standard operating procedure
(SOP) has been proposed to be used for soil
sampling in practice, including routines for
‘W-pattern’ and point sampling in the field,
storage of samples and withdrawal for DNA
extraction (Handledning för provtagning vid
biologisk markkartering).
In 2012 the proposed sampling routine with
“W-pattern” was tested on 23 fields on the test
4
farm Bjertorp in Västergötland. A very high
variation in infestation was observed between
the “field-averages” and fields unsuitable for
oil seed rape were identified. Next step, an additional fixed point sampling will take place
during spring 2013 to identify sites with high
and low level of infestation for testing of resistant cultivars and treatment with nutrients.
For the development of field sampling and a
better understanding of the variation in field,
collaboration has been initiated with Prof.
Kim Esbensen at De Nationale Geologiske
Undersøgelser for Danmark og Grønland,
GEUS, in Copenhagen. He is an expert in the
theory of sampling and the aim of the work is
to improve the representativeness in our field
sampling. A joint project did run for three
months, January-March 2012.
Most of the soil samples analysed during
phase I have been saved and stored. A collection of more than 600 soils with different levels of infestation is now available.
Pathogen
Biological
”Basic
Science”
DNA
Detection
qPCR
BioAssay
Field
Trials
BioSom
Map, Farm
Service
(PCR/GIS)
P. brassicae
Club root
V. longisporum
Verticillium wilt
S. sclerotiorum
Sclerotina stem root
Phytopphthora sp
New rot i Pea
A. euteiches
Rot root of Pea
F. avenaceum
P. exigua
C. destructans
Clover root rot
G. graminis
Take all
A cochiloides
Rot root sugar beet
Table 1. Pathogens given priority in the BioSoM
­programme, phase I. Pathogens, activities and
knowledge. Filled squares = knowledge status,
­unfilled squares = knowledge gaps left to be filled in.
DNA extraction of large soil samples
The detection limit in soils can be improved by
extracting larger amounts of soil and changing the extraction conditions. The development
of a method for DNA extraction from large
Disease Severity Index
Available qPCR methods
Real-time PCR methods for quantification of
P. brassicae (club root), S. sclerotiorum (stem
rot) and A. euteiches (pea root rot) have been
developed and used to analyse field samples
and plants. The detection limit in case of clubroot is below 1 000 resting spores g-1 soil,
which is the generally accepted limit for risk
of disease development.
Interestingly, stem rot sclerotia (often >4-5
mm) can be detected already at sieving of the
soil samples, which gives a simple method
for screening samples for presence of high
amounts of S. sclerotiorum. Sieving is included in the SOP for biological soil mapping.
For pea root rot, the qPCR protocol can detect one single oospore in a PCR tube and gives good detection at extraction of 0.35 g soil
from soils with a high DSI (Disease Severity
Index 0–100) based on a bioassay of 500 g soil.
The problem is that soils with low DSI (<20–
30) seem to have very low levels of oospores per gram of soil, probably less than a few
oospores g-1. At very low oospore densities, the
qPCR assay with 0.35 g soil gives too many
false negative signals, and the method needs
further development at this stage.
The real-time PCR assay for quantification
of A. cochlioides, causing rot root in sugar
beet, has been developed and initial tests show
that varying levels of soil infestation can be
detected (Figure 1). A larger set of soil samples with known disease severity indices (~ 50
samples) will be analysed early in phase II as
well as a soil dilution series, artificially infested with A. cochlioides oospores. (Fig1)
90
80
70
60
50
40
30
20
10
0
y=0,0106x + 33,633
R 2 = 0,84008
0
1000
2000
3000
4000
5000
Target copies / g soil
Figure 1. Analysis of A. cochlioides in soil samples.
Relationship between qPCR (target copies/g soil)
and disease severity index (DSI) based on naturally
infested soil samples from seven Swedish fields.
amounts of soil has been performed together
with ScanBi Diagnostics AB.
A protocol for extraction of 5 g soil instead
of 0.35 g, followed by ball milling, has been developed and tested for detection of A. euteiches
in soils with low levels of infestation. The first
results were encouraging, as 1–2 oospores in 5
g soil were detected. Repetitions are planned to
take place in the early part of phase II.
A new commercial kit that extracts DNA
from 5–10 g soil will be available from 2013
(FastDNA 50ml SPIN Kit for Soil, MP Biomedicals). Extracting DNA from larger soil samples will hopefully lower the detection limits of
our diagnostic methods, but also make the sub
sampling more representative.
International collaboration Take-all
Gaeumannomyces graminis (take-all) is an
important soil-borne pathogen in cereals.
Earlier experience and problems of developing a qPCR in our own laboratory and contacts with Dr. Mckay, Plant and Soil Health
Laboratory at SARDI in Australia, have led
to collaboration where qPCR analysis of takeall is performed at SARDI. The first results
from January 2012 indicate that their methods and oligo-primers are working well for
5
Average Disease Severity Index
Wheat cv. Dacke and Apogee, grown in the
artificially infested commercial soil with Ggt
6,0
2-weeks
3-weeks
5-weeks
5,0
4,0
3,0
2,0
1,0
0,0
C-
Da
ck
Da
e1
ck
e-
Da
0.0
ck
63
e-
Da
0.
25
ck
e1
C-
Ap
og
Ap
ee
og
-1
ee
Ap
-0
,0
og
63
ee
Ap
-0
,2
og
ee
5
-1
Figure. 2. Average disease severity index (DSI) in
wheat cv. ‘Dacke’ and ‘Apogee’ which were grown
in an artificially infested commercial soil at inoculum concentrations of 0.063, 0.25 and 1%.
our ‘Swedish’ strains of G. graminis.
The goal for the take-all disease project was
also to develop a reliable and reproducible climate chamber bioassay for the assessment of
G. graminis var. tritici (Ggt) infection levels in
different soils and to be used for validation of
qPCR-based methods.
A fast bioassay was developed for screening
of aggressivity of G. graminis isolates and in
climate chamber, the pathogenicity of selected
Ggt isolates was established on spring wheat
cv. ‘Dacke’ and the fast growing wheat ‘USUApogee’ (Fig. 2).
The unique possibility with this new assay
using the cultivar USU-Apogee is that its entire life cycle can be completed within 65 days
under optimal condition. It can be used for assessment of yield loss in naturally infested soil
within a relatively short period of time, when
such analyses are needed.
qPCR under development
Quantitative PCR methods for pathogens causing root rot of red clover (Fusarium avena6
ceum, F. culmorum, Cylindrocarpon destructans and Phoma exigua) have been developed
and will be used to monitor the development of
these pathogens in roots and soil samples from
Swedish red clover fields and field experiments
where a range of cultivars are being investigated.
The main challenge in WP1 has been the development of qPCR for Verticillium. We have
investigated 10 DNA loci of V. longisporum in
82 experiments comprising 32 primers in 21
combinations. Of these new PCR primers were
17 designed by us, and additionally 15 were
found in the literature. We have also designed
four Taq-Man probes.
In our work we have used 14 fungal isolates
(seven V. longisporum, two V. dahliae, four V.
albo-atrum and one V. tricorpus). We have continued the work with optimising the β-tubulin
assay by using two qPCR machines, three different enzyme kits, numerous additive concentrations and time/temperature conditions.
The assay has at this moment sometimes
faulty amplification efficiency and sometimes
it works. The cause for this inconsistency is
lack of high quality sequence data on V. longisporum and related species. That and the rather
close phylogenetic relationship between the
Verticillium species make it difficult to optimise qPCRs and advance the sub-project. Therefore, all sequence data that are generated in
WP3 will also be used in the following development.
New information on Verticillium genomes
was generated at the end of 2012 outside the
programme. These new data forming the basis
for new primer-sets to be evaluated 2013 will
finalize the work on Verticillium at this level.
Phthor sp. on pea and faba bean
A new Phytophthora species causing root rot
of pea and faba bean has been characterised
including molecular phylogenetic analysis,
and an isolate collection has been deposited
in international culture collections. Isolation
protocols and bioassay procedures for pathogenicity tests on different host species and
genotypes have been established.
Germplasm of pea, faba bean, lentil and
chickpea have been screened for resistance,
and strong variation in resistance among
cultivars has been observed. Selective PCR
primers for detection and quantification in
soil and in plant roots are under development. A dry inoculum formulation for soil
and growth substrate inoculation has been
developed, and is infective at rates down to
80 oospores per ml soil. This is a key prerequisite for both accurate screening of resistance with equal infection pressure in
every pot, and realistic soil inoculation experiments, for example with the purpose of
identifying disease-suppressive soils.
A four-year field trial at three field sites
naturally infected with P. pisi and A. euteiches has been completed (Figure 3). Significant effects of the different pre-crops
on disease severity and yield were found.
(Table 2)
The cooperation with Findus AB to
search for P. pisi in their routine root rot
bioassays yielded valuable information on
Phytophthora root rot incidence and distribution in Skåne and Hallands län during three years. Overall, P. pisi was found in the
entire area in which Findus AB grow peas,
but at a lower incidence (2-5%) compared
to Aphanomyces root rot (23-27%). The two
pathogens often coexist in the same sample,
indicating that they are both favoured by
intensive pea cultivation.
Table 2. Design of field trials where effects of P. pisi
and A. euteiches are studied (4 blocks x 3 fields).
Reports and knowledge dissemination
Typical symtoms of club root caused by
P. Brassicae on white mustard.
Photo: Ann-Charlotte Wallenhammar
Standard Operation Protocol for sampling,
handling, milling and storage of soil samples.
In Swedish: Handledning för provtagning och
hantering av jord vid biologisk markkartering.
BioSoM Report, first draft.
7
Forecast based on bioassay
and field trials
Detection of clubroot in
field experiments
Soils from 31 field experimental sites of variety trials in winter oilseed rape and summer oilseed rape were analysed for the
presence of DNA from P. brassicae. The
pathogen was detected in 14.6% of the fields
distributed in south and central Sweden. The
­detected amount of DNA ranged from 1 to
323 fg g-1 soil.
Sampling techniques in an infested field
were evaluated by qPCR. The results show
that sampling along a diagonal as well as in a
‘W-pattern’ is adequate for getting an indication of the inoculum level in this field.
Detection of clubroot in infested fields
A field with a high population density of
P. brassicae was identified in 2010, and the
presence of P. brassicae DNA has been determined by qPCR at 24 individual sampling
points chosen by GPS. The sampling was repeated in 2011, and a great reduction in DNA
was shown. Continuous data from this field
will give us a unique possibility to study the
decline in pathogen DNA. By using qPCR we
will be able to get a more accurate measure in
different cropping schemes.
Pathotype testing of P. brassicae
The knowledge of different pathotypes prevalent in Swedish soils has been improved.
The term ‘pathotype’ is used in place of
‘race’. Two sets of differential hosts, including Williams and the European Clubroot
Differentials (ECD), were used for pathotype differentiation. A root dip method according to the original protocol (Buzcaki et al.,
8
1975) was used for infection.
A total of 11 P. brassicae populations were
selected, representing fields from various
parts of Sweden. Four isolates were repeated three times. The isolate from Hallsberg
was aggressive and, while the other isolates
did not show satisfactory infection for the
susceptible cultivars in the ECD set.
qPCR was used to analyse diffuse symptoms on three selected isolates. The results
confirmed the results according to the bioassay. A set of bio-assays were also performed
by Lantmännen SW Seed.
Further, seven different cultivars of Raphanus sativus ssp. oleifera were tested for
susceptibility at the request of Agortus AB.
Airborne inoculum of S. sclerotiorum
The real-time PCR method developed in preceding projects was used for detecting
S. sclerotiorum DNA on petals and leaves at
different levels of the plant at different points
of time starting prior to early bloom in field
experiments. A Burkhard 7-day volumetric
spore trap was introduced in 2009 for sampling of airborne spores. This was done in order to better understand the correlation between sclerotia in the soil, airborne spores and
actual infection.
For analysis of DNA in airborne samples,
a new type of DNA extraction was developed, and the protocol modified for analysis of
DNA. Validation of the methods developed,
including sampling and preparation of petals
and leaves as well as corresponding reading
of disease incidence in the field, was undertaken in 10 fields in 2011.
Soils were also sampled. A disease support
system will be developed based on predictive
tests, field data and local climate.
Rapid diagnosis of patogens of red
clover in soil and roots
Red clover is the most important legume
crop in Swedish forage production, however,
the persistence is poor. Real time PCR has
been developed to quantify the dominating
soil-borne pathogens of red clover, Fusarium
avenaceum, F. culmorum, Cylindrocarpon
destructans and Phoma exigua in root and
Papers:
Heyman, F., Blair, J.E., Persson, L., and
Wikström, M. 2013. Root rot of pea and faba
bean in southern Sweden caused by Phytophthora pisi, sp. nov. Plant Disease, http://
dx.doi.org/10.1094/PDIS-09-12-0823-RE.
(only published online at the time of writing).
Heyman, F., Almquist, C., Jonsson, A.,
Wallenhammar, A-C., Lindahl, B., Stenlid
J. 2008. Evaluation of a quantitative PCR
method for detection and quantification of
Aphanomyces euteiches in soil samples.
Developed and altered manuscript from dissertation by F. Heyman 2008, SLU.
Hosseini, S., Karlsson, M., Funk Jensen, D.,
Heyman, F. 2012. Quantification of Phytophthora pisi DNA and RNA transcripts during in
planta infection of pea. Eur J Plant Pathol.
132:455-468
Wallenhammar, A-C., Almquist, C., Söderström, K., Jonsson, A. 2012. In-field distribution of Plasmodiophora brassicae measured
using quantitative real-time PCR. Plant
Pathology 61: 16-28.
Reports and knowledge dissemination
Studier av infektionsprocessen av Sclerotinia sclerotiorum i vårraps och vidareutveckling av modell för riskbedömning 2009.
Slutrapport av projekt H0860030 Stiftelsen
Lantbruksforskning.
Oral and poster presentations
Heyman, F. 2010. A new Phytophthora
soil. The effects on germination, seed borne
pathogens and field germination of a Thermoseed treatment of clover seeds was also
investigated in green house, agar plates and
field experiments.
The methods developed will facilitate analysis on the importance of different sources
of infection, effects on crop measures and
choice of cultivars. The epidemiology of the
pathogens and sustainability of the plants are
investigated in a field experiment in selected
future cultivars of red clover.
species causing root rot in pea and other
legumes. 9th conference of the European
Foundation for Plant Pathology; Evora,
Portugal, Nov 15-18 2010. (poster)
Jonsson .A, Wallenhammar A-C and
Dixelius C. 2012. Long-term soil data sets
reveals shifts in population of Plasmodiophora brassica. 6th International Symposium
on Brassica and 18th Crucifer Genetics
Workshop,; 12th-16th November 2012,
Catania, Italy. (oral)
Wallenhammar. A-C, Almquist C., Söderström M., Jonsson A. 2012.In-field distribution of Plasmodiophora brassicae measured
using quantative real-time PCR and the
influence of soil physiochemical parameters
on disease development. 6th International
Symposium on Brassica and 18th Crucifer
Genetics Workshop,; 12th-16th November
2012, Catania, Italy. ( poster)
Wallenhammar, A., Almquist, C., Söderström, M., Jonsson, A. 2011. In-field distribution and quantification of Plasmodiophora
brassicae in soil samples measured using
real-time PCR. In: Proc 13th International
Rapeseed Congress, June 5-9, Prague,
Czech Republic, p. 459.
Wallenhammar, A-C., Almqvist, C., Redner,
A. 2011. Development of disease support
systems of Sclerotinia stem rot in oilseed
rape using real-time PCR. In: Proc. 13th
International Rapeseed Congress, June 5-9,
Prague, Czech Republic, p. 460.
9
Pathogen biology – resting
structures and applied genomics
Gene sequencing of P. brassicae
A method to obtain pure P. brassicae in sufficient quality and quantity for de novo whole genome sequencing has been developed.
DNA of a single spore isolate has been used
to create two different insert size Illumina
libraries. A sequencing data set, based on
a 200 bp pair-end library was sequenced at
Scilife Lab in Stockholm while a 5 kb insert
library was sequenced at BGI Hong Kong.
The obtained datasets have been combined, and a draft assembly of the first P. brassicae genome has been established. The assembled genome has a total length of 24Mb
with an average coverage of 200 times and
50% of the contigs are 273.8kb or longer,
with the longest contig spanning 814kb. An
approximately 100kb long contig appears to
represent the mitochondrial genome.
Interestingly, the DNA sequences obtained show very low similarity to DNA sequences in the public databases, suggesting
that P. brassicae genes might be quite unique compared with known genes of other
species. To identify and annotate genes it
was therefore crucial to obtain RNA data.
RNA of P. brassicae infected Chinese cabbage was used to obtain transcriptome data,
sequenced at BGI, Hong Kong. The data
sets were filtered by mapping the reads to
the P. brassicae genome draft or to the host
genome B. rapa and assembled. Our first
analyses revealed approximately 6500 gene
models. Those gene models can now be exploited in future studies for their biological
functions, i.e. in virulence and life stage
specific events.
The genome and transcriptome data sets
10
generated for P. brassicae will shed light on
the biology of this poorly understood protist species, and it’s life cycle which is not
yet completely described. The data will also
substantially improve our knowledge associated to phylogeny and evolution of Rhizaria
organisms, a species-rich supergroup of unicellular eukaryotes with only very limited
information on genome data to date.
Initial testing of Swedish isolates as well
as international isolates from Canada, Germany and New Zealand for the variation in
the rDNA sequence published for a Japanese
P. brassicae population, revealed that all
tested P. brassica have an identical rDNA
sequence which differs from the sequences.
Verticillium sclerotia biology
In silico comparative analyses of the published genome data for Verticillium dahliae
with sclerotia forming and non-sclerotia forming fungi revealed a total of 205 putative
candidate genes that may be involved in
sclerotia in V. dahliae. Literature research
and putative functions of blastP hits of the
candidate list were used to narrow down the
list to 21 candidates that were selected for
further analysis, i.e. proteins with similarities to proteins involved in blood clotting or
freezing tolerance.
Gene knock-outs of 7 candidates (verified
by PCR) have been achieved up to now and
are currently analysed for phenotypes and
virulence. Analyses were complicated due to
the low quality of existing V. dahliae genome data. To improve the genome data of Verticillium species and to further understand
V. longisporum species, the major Brassica
pathogen in Sweden, DNA and RNA material for sequence analyses are in the pipeline,
financed outside of BioSoM. This will provide insights both on the pathogen, which is
suggested to have evolved from a hybrid of
V. dahliae and an unknown fungal species,
and on the host response using the Brassica
rapa genome.
The sequence data for V. longisporum
might also explain the different DNA content detected in V. longisporum isolates and
help to understand the preference of V. longisporum for Brassica hosts. High-quality sequence data will also support advances on
qPCR for detection of Verticillium in soil.
Beta vulgaris
– Rhizoctonia solani interaction
In a PhD project, Rhizoctonia solani on
­sugar beet will be studied. The first year
has largely been committed to establish
­protocols and materials for next generation
sequencing analysis. We started to establish
materials for RNA-sequencing analysis with
the aim to identify highly activated genes in
the pathogen and in the plant host that are
important for this specific interaction. Thus,
materials have been prepared, RNA isolated
from 36 samples and sent to the sequencing
platform of Syngenta, in North Carolina,
USA.
In parallel, fungal RNA has been prepared
and samples fused with a project on similar
analysis on other R. solani isolates at Bielefeld University, Germany.
In order to shed light on R. solani taxonomy and anastomosis groupings, collection
of isolates from various plant hosts and soils
was initiated 2012. In next step their DNA
sequences will be amplified to generate information for extensive phylogenetic analysis including mating type associated ge-
nes. This workpackage will after phase I be
transferred to a specific VR industry grant
outside BioSoM.
Genome and transcriptome data sets generated in this workpackage will in phase II
deepen the understanding of disease cycles,
plant host interactions and diagnostic tools
of the soil-borne pathogens studied.
Papers:
Martin, T., Schwelm, A., Dixelius, C. 2011.
Genome-wide comparative analysis reveals
insight into maize fungal pathogens. (Manuscript in T. Martin’s PhD thesis 2011:66).
Roos, J., Hopkins, R., Kvarnheden, A.,
Dixelius, C. 2011. The impact of global
warming on plant diseases and insect vectors
in Sweden. Eur J Plant Pathol 129:9-19.
web version http://pub.epsilon.slu.se/5568/1/
roos_j_etal_110111.pdf
Reports and knowledge ­dissemination
PCR primer sequences related to Verticillium
and qPCR protocols delivered to Scanbi AB
2011. PM BioSoM.
Oral and poster presentations
Roos, J., Schwelm, A., Dixelius, C. 2011. Plant
defence to Verticillium wilt and fungal sclerotia
biology. In: Proc. 13th International Rapeseed
Congress, June 5-9, Prague, Czech Republic,
p. 235.
Schwelm, A Fogelqvist. J and Dixelius C. 2012
First glance at the genome of the club root
pathogen Plasmodiophora brassicae. 6th
International Symposium on Brassica and
18th Crucifer Genetics Workshop,; 12th-16th
November 2012, Catania, Italy. (oral)
Schwelm, A Fogelqvist. J and Dixelius C. 2012
First glance at the genome of the club root
pathogen Plasmodiophora brassiae. Joint
ISOP and ISEP meeting Protist2012, 29th
July-3rd August; Oslo, Norway (poster)
Schwelm, A Fogelqvist. J and Dixelius C. 2012
First glance at the genome of the club root
pathogen Plasmodiophora brassiae.at the
MPMI Conference, Kyoto, Japan 29 July-2
August 2012. (poster)
11
Soil characteristics and
­infestation of pathogens
Boron enhances P. brassicae tolerance
The effects of selected nutrients on the development of club root on Chinese cabbage
were tested in pot experiments in three locations, the greenhouse at Uddetorp Agricultural College (Skara), the growth chamber at
University in Skövde and in growth chamber
at SLU, Skara. There were no significant effects of different doses of N, S and Mn on disease severity. However, in the case of boron
(B) a significant decrease in clubroot disease
severity was observed.
During the first experiment four doses of B
were tested (11.5 to 69 kg B/ha). Despite high
infestation level (5x106 spores/g soil), DSI decreased from 64 in non-treated control to 35
in plants treated with 11.5 kg B/ha. This result was confirmed by a second experiment
(2.5 to 23 kg B/ha).
Micro-bioassay
Traditional bioassay to test the infection level
of P. brassicae is time and space consuming,
as disease symptoms are evaluated after six
to eight weeks of growing Chinese cabbage
plants in pots in greenhouse or growth-chamber. A micro-scale bioassay was developed to
provide a more efficient and quick (3–4 weeks)
tool to investigate the influence of different
treatments on club root severity.
Possibilities of further reducing the time of the
experiment will be tested in phase II with microscope observations of roots, real-time PCR
technique for assessing the amount and development stage of pathogen in the roots, as well as the
background of boron-plant-pathogen.
Field experiments
During 2012 two field trials using boron
(Bortrac 150, Yara) were conducted. Field experiments were established in spring oilseed
rape at Bjertorp and in winter oilseed rape at
Lanna Research Station. Experimental plots
were sprayed with water solution containing
0, 2.5 or 5 kg B/ha.
Because of a rainy spring and location of
plots at Bjertorp, disease severity was quite
high in all plots (DSI 30–40), regardless of treatment and despite a moderate inoculum load
prior to growing season (2.3x105 spores/g soil).
On the other hand, almost no infected plants
(2 out of 300) were found during symptom assessment in the winter oilseed rape trial, even
though initial infestation of this field was higher 4x106 spores/g soil. The field trials will be
Nutrient treatments against
A. ­euteiches pea root rot
The influence of chosen nutrients on pea root
rot was studied in pot experiments in the
greenhouse at Findus R&D, Bjuv. No welldefined pattern in the effect of phosphorus,
copper, manganese and sulphur on disease
severity was found. However, as in the case
of club root, treatment with boron (5.5, 11.5,
23 kg B/ha) reduced pea rot root severity in
all of three tested naturally infested field soils
with different infestation levels.
The second experiment confirmed positive
influence of boron on decreasing pea root rot
severity. During plant assessment slight toxic
effects of boron was observed on the lowest
leaves, but there was no decrease in fresh and
dry weight in plants with toxicity symptoms.
12
followed during phase II, also in cooperation
with Yara AB.
Figure 3. A field with probe points positioned and pathogen count.
Moreover, on roots of plants treated with B
more large nodules were observed.
A small pilot experiment with pea seed
dressing was conducted. Seed was treated
with 1% of boron solution. Plants germinating
from seeds treated with B were more resistant
to A. euteiches, when compared to water or
non-treated seeds. Further experiments with
more replications and other concentrations
will be done during phase II in cooperation
with Findus R&D.
S. sclerotiorum
The possibilities of using cotyledon assay as
a down-scaled bioassay for S. sclerotiorum
have been tested. The first results have been
promising, indicating that this type of assay
can work for testing the effects of nutrients
on the establishment of pathogens. Further
testing is not included in phase II.
Papers
Stoltz, E., Wallenhammar, A-C. 2012. Micronutrients reduces root rot development in red
clover (Trifolium pratense). Journal of Plant
Diseases and Protection, 119 (3), 92-99..
Wallenhammar, A-C., Almquist, C., Söderström, K., Jonsson, A. 2012. In-field distribution of Plasmodiophora brassicae measured
using quantitative real-time PCR. Plant
Pathology 61: 16-28.
13
Implementation and use in R&D and practice
The focus of implementation during
the first years was on presenting the BioSoM
programme to farmers, advisors and researchers through posters and presentations at different meetings and exhibitions, to start using the
available qPCR methods in some field trials and
to screen some fields for the presence of soilborne pathogens.
Sampling for biological soil mapping has
been performed at Lanna Research Station
SLU, Bjertorp, a farm managed by Lantmännen SWSeed, at Uddetorp Agricultural College,
Skara, and on individual fields at Åkerby, Örebro, and Stockagården, Källby. The clubroot
analysis is on-going and some preliminary
maps have been produced.
Analysis of samples from long-term fertility
experiments established over fifty years ago and
sampled every 4 or 7 years show how the population of clubroot has varied over time at experimental sites in Skåne as well as in western
Sweden (Figure 4). The crop rotation includes
oilseed rape every fourth year in Skåne and every sixth year in the rest of Sweden.
A similar development of P. brassicae was
observed at 4 of 5 sites in Skåne. The soil at the
site Fjärdingslöv has a high content of limestone
and a high pH-value compared to the other sites.
The evaluation of these experiments will continue in phase II.
Since the dissemination of the results from
BioSoM is a very important task, a communication plan for the programme was developed by
the Steering Committee during 2011. A collaboration has also been initiated with researchers at
the University of Skövde working with cognition and machine/man interaction. The aim is to
identify possibilities to use knowledge from decision-making and from game development to
improve dissemination and use of soil mapping
14
and biological soil mapping in particular.
In 2012, a pilot project, DEMIPROF (Decision Making in Professional agriculture), was
started. The project aims to study farmers’
decision-making, a process that is influenced
by many different factors, and requires competence in many specialized areas. Farmers’ decision-making is characterized by a very complex
situation in which biological, technical, economic, ethical and social factors are integrated.
Very little previous research has been done
where farmers´ decision- making is looked upon
from an overall perspective, which made this
project extra important. In the project the farmers’ decision-making is studied in their natural environment, so-called naturalistic decision
making (NDM). The cognitive theoretical framework is the so called distributed cognition. This
highlights cognition as a complex dynamic system between people and technology, where decision-making and problem solving are prominent
cognitive processes and cognition is studied ”in
the wild”, i.e. in its natural environment.
The project´s implementers were three postdoctoral researchers from the University of
Skövde and a project leader from precision agriculture and pedometrics, Department of Soil
and Environment SLU, Skara. The first phase
is characterized by description of the working
situation and the need for advice and IT support. Each performer meets a farmer and his
advisor through regular visits to the farm over a
14-month period. The idea is to follow the farmers during an entire growing season. The visits are made both when the adviser and the farmer meet and when the farmer is alone.
The experiences so far have been that the farmers has great confidence in the advisor and
that the farmer’s situation is characterised by a
great mix of levels of decision-making – strate-
25 000
Transfer of knowledge
Transfer of the knowledge generated in the
programme is secured through a ‘working network’, i.e. a network with many ways of inte-
DNA (fg/g soil
20 000
15 000
10 000
5 000
0
The value of the wide competencies
in the programme
This programme covers aspects from gene/genome levels to field and soil management and
on to advisory services to farmers. The wide
competencies of the partners in the programme and the stakeholders are of the utmost importance in achieving the ambitious goals set.
This initiative is also part of the work to meet
the requirements of EU Directive 2009/128 on
integrated pest management, to be implemented
in practice from January 2014.
The possibility to quantify the status of soilborne pathogens would enable farmers to improve management, choose more appropriate
cultivars (resistant if available), reduce unnecessary use of plant protection (fungicides) and use
some of the precision agriculture tools now available for crop production.
In order to meet new climate-related challenges and regulatory frameworks, there is an
urgent need to strengthen cooperation and to
develop methods for improved implementation
of new knowledge between academia and agricultural-associated stakeholders Furthermore,
it is essential to improve communication to farmers and advisors and to find new possibilities
for communication using all the available information technologies through collaboration with
other universities.
Ekebo
30 000
DNA (fg/g soil)
gic, tactic and operative. Farmers were selected
by the Agricultural Society, and all advisors in
the project are employed by that organization.
In 2013, the project will deliver its final report
and the results will be presented at a conference
focusing on extension science.
1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 2011
5
5
5
5
7
1110 5210 23900 25800 1432
37
Figure 4. Change in level of infestation of Plasmodiophora brassicae in soil (ie DNA fg/g soil) from
long-term fertility experiment at Ekebo, 1971-2011.
raction and communication between stakeholders, BioSoM scientists and end-users such as
farmers and colleagues working with R&D.
The most important are:
- Meetings of Steering Committee.
- PhD students from industry, from stakeholder companies such as Syngenta and Eurofins Food and Agro AB.
- Stakeholder participation in workpackages,
both in kind and discharged.
- Workshops with all personnel in connection
with meetings of the Steering C
­ ommittee.
- Newsletter.
- Video-link meetings every second month,
connecting Uppsala-Alnarp-Skara for discussion of activities and problems in the WP
projects etc.
Popular science articles
Wallenhammar, A-C. & Jonsson, A. 2008. Biologisk
markkartering ger koll på sjukdomar. Arvensis 5, 11.
Wallenhammar, A-C. 2008. DNA på kronbladen
avslöjar bekämpningsbehovet. Arvensis 2, 13.
Wallenhammar, A-C. 2009. Rapsens fotboja. Arvensis
4, 18-19.
Netterlund, H. & Wallenhammar, A-C. 2010. Rätt Rättika. Arvensis 3, 14-15.
Jonsson A 2012. Biologiska markanalys – kan minska
sjukdomsrisker. Idetidskriften C. Årgång 24, nr 2.
Nilsson S-Å, Engdahl Axelsson C. 2012. Kontrollera
risken för klumprotsjuka. Svensk Frötidning 3, 16-17.
Wallenhammar A-C. 2012. Konsten att hantera klumprosjuka. Svensk Frötidning 3, 11-14
15
Partnerskap Alnarp
Jordbruks- & 2012-03-03
Trädgårdskonferensen
Tema ”framtida möjligheter inom de gröna näringarna”
Anders Källström, VD LRF:
”Vilken är LRFs roll i framtida produktionsmöjligheter”.
Lisa Sennerby Forsse, Rektor SLU:
SLUs möjligheter att utveckla inriktningen mot
”Framtidens Lantbruk”.
Anders Hildeman, Global Forestry Manager IKEA:
IKEAS väg från skogsråvara till heminredningsdetaljer.
Fredrik Javensköld, Skånemejerier:
Skånemejeriers strategi mot en hållbar livsmedelsproduktion.
Rune Andersson, professor SLU:
Tankar kring ”Framtidens Lantbruk står på flera ben”.
« Läs mer om samtliga programpunkter och anmäl
dig senast 28 februari via QR-koden till vänster
eller webbsidan: http://partnerskapalnarp.slu.se
STORA AULAN, ALNARPSGÅRDEN TORSDAGEN DEN 3 MARS
Program Management: Assistant Researcher Anders Jonsson,
department of soil and environment, SLU +4651167129,
[email protected]
http://www.slu.se/mark/biosom
© SLU Swedish University of Agricultural Sciences 2013