Elektronmikroskopi för att titta in i celler och mikroorganismers nano-universum. • Eukaryota cellers cytoskelett • Bakteriers cytoskelett • Elektronmikroskopi Linda Sandblad Institutionen för Molekylärbiologi 2015-10-27 Nano-universums skala Cytoskelettet har en central roll i cellernas funktion. Skapar cellens infrastruktur och rumsliga organisation. Interagerar med olika typer av cytoskelettbindande proteiner. https://www.youtube.com/watch?v=FzcTgrxMzZk • SEM = Scanning Electron Microscop • TEM = Transmission Electron Microscop 4 Ljus mikroskop Figure 9-42 (part 1 of 2) Molecular Biology of the Cell (© Garland Science 2008) TEM Transmission Electron Microscopy TEM Bacteria Proteins in solution 7 SEM Scanning Electron Microscope (Svepelektronmikroskop) Figure 9-49 (part 1 of 2) Molecular Biology of the Cell (© Garland Science 2008) By SEM File:Miridae SEM 3.jpg Cytoskelettet är polymerer av protein Protein sätts ihop till filament - Polymeriserar – långa trådar eller stavar i alla celler Direct visualization of secondary structures of F-actin by electron cryomicroscopy Takashi Fujii,1 Nature October 2010 Actin Microtubules EB1-GFP αβ-Tubulin + Taxol assemble into microtubule in vitro β + +GTP Taxol α Nogales et al., 1998 - Dynamic Instability is driven by GTP hydrolysis Figure 16-16a Molecular Biology of the Cell (© Garland Science 2008) Sample preparation for EM – Negative staining Protein in solution Heavy metal salt What you see in the TEM = Freezing a hydrated solution without crystallization • Rapid freezing turns water in to a amorphous solid state • Sample have to stay below -140° C • Vitrifies samples are transparent for a electron beam Negative staining Frozen hydrated by plunge freezing Cryo-EM 17 The key is RAPID cooling Starts at -140°C to -180°C 18 Duboche and Fuller Sample preparation for cryo-EM Plunge freezing Grid Nitrogen Ethane 19 Vitrified sample in the carbon holes 20-200 nm gold sample carbon Linda Sandblad 1-4 µm Vitrified buffer/water Fråga: The electron micrograph shown in figure A were obtained from a population of microtubules that were growing rapidly. Figure B was obtained from microtubules undergoing “catastrophic” shrinking. Comment on any differences between A and B, and suggest likely explanations for the differences that you observe. The bacterial cytoskeleton. Matthew T. Cabeen, and Christine Jacobs-Wagner J Cell Biol 2007;179:381-387 • • • Tubulin Actin Intermediate filaments = = = FtsZ - Cell division MreB, ParM - DNA segregation Crescentin, FilP - Cell shape FtsZ-GFP FtsZ negative staining EM FtsZ ring model The actin like cytoskeleton Figure 16-27a Molecular Biology of the Cell (© Garland Science 2008) Homology between prokaryotic and eukaryotic cytoskeletal filaments. Bill Wickstead, and Keith Gull J Cell Biol 2011;194:513-525 © 2011 Wickstead and Gull Crescentin, a intermediate filament in Caulobacter crescentus Ausmees et al. 2003 Electron Tomography 27