Configurations in Ne I pd-configuration LS-coupling Configuration Term Central field Repulsion Numerical example for 2p3d in O V, energies in cm-1 E(2p3d) = 701810 Kinetic and central part of electrostatic ∆E (P - D) = 8980 Direct part of electrostatic repulsion ∆E (1F - 3F) = 15074 Exchange part of electrostatic repulsion pd-configuration LSJ-coupling Configuration Term Level Central field Repulsion Spin-orbit Numerical example for 2p3d in O V, energies in cm-1 E(2p3d) = 701810 Kinetic and central part of electrostatic ∆E (P - D) = 8980 Direct part of electrostatic repulsion ∆E (1F - 3F) = 15074 Exchange part of electrostatic repulsion ∆E (3F4- 3F3) = 235 Spin-orbit magnetic energy Degeneracy – statistical weight, g, in a pd-configuration. g ( E ) 60, g (3 D) (2 L 1) (2 S 1) 15 g (3 D3 ) 2 J 1 7 Elektronens magnetisk moment pga banrörelsen e 2m Stern-Gerlach experiment. Electron spin. A beam of neutral silver atoms pass through an inhomogeneous magnetic field directed in the z-direction. Silver has a ground configuration with filled orbitals and an unpaired 5s outer electron, hence L = 0 and μL = 0 Still the Ag-beam split into 2, which can be explanined by assuming that the electron has an intrinsic angular momentum – spin – and with that an associated magnetic moment μS. s gs e 2m s, gs 2 Magnetiska dipolmoment e L µL = − 2m e 2 − gs ⋅ ⋅ S , gs = µS = 2m e − ⋅ ( L + 2S ) µ tot = 2m Vi ska studera 3 magnetiska effekter i en atom. Energin ges alltid av E =− µ ⋅ B så vårt jobb är att bestämma hur momentet respektive magnetfältet kan beräknas • Spinn-ban växelverkan: H SO = − µ S ⋅ BL - klart • Hyperfinväxelverkan – nästa LP • Atomer i ett yttre magnetfält: • Zeemaneffekt • Paschen-Back effekt Enheter Här: L , µ = − e L 2m Foot: L 1, µ = − µ B L , µ B (Bohr magnetonen) = e 2m Zeeman effect in the vector model J J e J e Weak field => L and S precess much faster around J than J around B The net effect of is zero pd-configuration LSJ-coupling and a magnetic field Configuration Term Level Sublevel Central field Repulsion Spin-orbit Mag. Field Numerical example for 2p3d in O V, energies in cm-1 E(2p3d) = 701810 ∆E (P - D) = 8980 ∆E (1F - 3F) = 15074 ∆E (3F4- 3F3) = 235 ∆Emag (2 - 1) = 0,7 Kinetic and central part of electrostatic Direct part of electrostatic repulsion Exchange part of electrostatic repulsion Spin-orbit magnetic energy Magnetic energy separation in a 1T field Urvalsregler för E1 (elektisk dipol) strålning J = 0, 1 ej 0 → 0 Endast en elektron får ändra orbital, n → n’’ = 1 MJ = 0, 1 ej 0 → 0 om J = 0 I perfekt LS-koppling S=0 L = 0, 1 ej 0 → 0 Zeeman effect and the polarization of light Viewed in absorption: M J 1 , M J 0 Polarization of Zeeman light An arbitrary motion in 3-dim can be described in Cartesian coordinates or by combining a linear and 2 opposite circular motions Magnetic effects on the spectrum from a white dwarf. Magnetic field about 6000 T!! (Paschen-Back effect) Balmer-beta Balmer - alpha Zeeman vs. Paschen-Back in a 3P Zeeman E E (3 P ) 1 LS [ J ( J 1) L( L 1) S ( S 1)] 2 B B g J M J B B 1 LS 10 3 P Paschen-Back E E (3 P ) B B ( M L 2M S ) LS M L M S B B 10 LS 3 P