AEBF01: L4 Design of the building envelope Insulation, thermal bridges, thermal mass Helena Bülow-Hübe Helena Bülow-Hübe 1 AEBF01: L4 Heat conduction phenomena Radiation Convection Conduction A ’pore’ in an thermal insulation material: Thermal conductivity Material Aluminium Steel, galvanised Steel, stainless Concrete Brick Light-weight concrete Wood, wood boards Mineral wool Polystyrene Helena Bülow-Hübe λ (W/m,K ) 220 50-60 14 1,7 0,6 0,10-0,19 0,14 0,04 0,03-0,04 Insulating building materials • Mineral wool – Glassfibre – Isover – Rock wool – Paroc • Polystyrene – Extruded – XPS – Expanded – EPS • Light expanded clay (Lättklinker) – Leca • Lightweight concrete (Lättbetong) – Yxhult • Wood wool – (Holzwolle) Träullit • Insulation of wood wool, cellulose, wool, linnenfibres, etc. Mineral wool (glass fibre) Polystyrene (XPS) Paper-based (cellulose) insulation ”Leca” 2 AEBF01: L4 Alternative building materials • Leca AAC - Lättbetong • blocks or elements blocks insulated blocks AAC /Lättbetong • Autoclaved Aerated concrete (AAC), or otherwise known as Autoclave Cellular Concrete (ACC), is a lightweight, precast building material. AAC provides structure, insulation and fire resistance in a single material. AAC products include blocks, wall panels, floor and roof panels, and lintels. • It has since been refined into a high thermally insulating concretebased material used for construction both internally and externally. Besides insulating capability, one of AAC's advantages in construction is its quick and easy installation since the material can be routed, sanded and cut to size on site using standard carbon tip band saws, hand saws and drills. • Even though regular cement mortar can be used, 98% of the buildings erected with AAC materials uses thin bed mortar, which comes to deployment in a thickness of 1/8 inch. This varies on national building codes and creates solid and compact building members. AAC material can be coated with a stucco compound or plaster against the elements. Siding materials such as brick or vinyl siding can also be used to cover the outside of AAC materials. Brick buildings • Lightweight concrete (AAC) blocks with stucco Bo 01, Malmö Yxhult’s low energy house Some manufacturers • • • • • • • Helena Bülow-Hübe http://www.isover.se http://www.paroc.se http://www.termotra.se http://www.ekofiber.se http://www.traullit.se http://www.leca.se http://www.yxhult.se 3 AEBF01: L4 Conductivity of insulating materials - examples Material λ (W/m,K ) Polystyrene, XPS (extruded) 0,033 Polystyrene, EPS (expanded) 0,037 Mineral wool boards for walls 0,037 Mineral wool, loose fill 0,042 Wood wool /cellulose fiber, (loose fill) Wood wool cement, blocks Lightweight concrete (various densities 0,039 0,07 0,10 - 0,19 0,205 The inverse of R is called the U-value! Rsi = 0.13 m 2 K/W Internal heat surface resistance Rse = 0.04 m 2 K/W External heat surface resistance Rtot = Rsi + R1 + R2 + R3 + ... + Rse U= 1 R tot Wall section: d2 d1 and wall constructions) Expanded clay (Lättklinker) Thermal transmittance, U-value d3 brick brick min.ull R= d λ series with electrical resistances: R1 R2 R3 Rtot = Rsi + R1 + R2 + R3 + Rse d = thickness (m) λ = heat conductance (W/m,K) U= 1 Rtot Modern single-family house – wood stud frame Rtot, Total heat resistance (m²K/W) U-value or Thermal transmittance (W/m²K) or (W/m²°C) Single-layer external wall – principle • Rain-coat, i.e. wood panel, brick etc • Ventilated air cavity • Ext. wind-barrier, i.e. 9 gypsum, fibre cement board or non-woven fabric • Insulation between loadbearing wood studs or lightweight studs • Vapour barrier, 0,2 PE-foil • Board, i.e 13 gypsum Helena Bülow-Hübe 4 AEBF01: L4 Double-layer stud frame • Insulation in two layers with studs in perpendicular directions give fewer thermal bridges and less air-gaps (cracks) –-> better craftsmanship, better U-value Homogenous insulation layer outside of stud frame • Facade board with slightly higher density give both wind-protection and better insulation + reduced thermal bridges In the case with brick wall (skalmur): Better protection against moisture problems caused by excessive mortar behind the brick. Exterior insulation of load-bearing concrete wall • Light-weight concrete and concrete walls are air-tight and are insulated with an exterior homogenous layer Stucco on insulation layer is Mo Helena Bülow-Hübe Do not use stucco on insulation with organic materials behind in un-ventilated constructions!! k!! ris e tur 5 AEBF01: L4 Timber or log-house (1700s) Plankhus - Wood planks Brick Standing wood planks from 1920’s. From (Björk et al., 1984). Helena Bülow-Hübe 6 AEBF01: L4 Stenstadshus, fram till 1930 Lamellhus, 1930-1960 Light-weight concrete walls and concrete slabs cast on site. From (Björk et al, 1984). Massive brick walls with timber floors. from (Björk et al., 1984). Elementhus, 1960- Wood stud walls 1950 • Wood chips insulation • Too little insulation… Outer wall: Sandwich-element concrete/min wool/concrete Slabs: Pre-cast concrete elements Inner wall: Leight-weight concrete Example of pre-fabricated multi-family dwellings. From (Björk et al., 1984). Houses with stud frames Approximate insulation thickness Plankhus Wood Wood Regelverkshus Stenstadshus Brick Äldre Lamellhus 1960: 95-125 mm 1960-70: 145 mm 1970-80: 165 mm 1980-90: 195-245 mm 2000: 170-200? mm Passive houses: 400-500 mm Helena Bülow-Hübe Brick and light-weight concrete Brick and light-weight concrete (concrete) Punkthus Load-bearing external walls Non-load 1920 bearing walls Nyare Lamellhus, Skivhus, (Punkthus) Nyare Lamellhus, Skivhus 1930 1940 1950 1960 1970 1980 Cast-on-site concrete Pre-cast concrete elements 7 AEBF01: L4 Building material use wood brick concrete How are masonry walls built today? other • Homogenous walls of insulating materials: Expanded clay, Lightweight concrete, wood wool cement blocks • Two layers of brick walls with intermediate insulation layer • ”improved” blocks i.e. Sandwichblocks (isoblocks) isoblock light-weight concrete U-value of insulated wall U-värde för tilläggsisolerad av vägg 1.4 U-värde (W/m²,K) • Consider the system border (=the exerior of the wall?) • In a super-insulated building, the extra insulation in a passive house can be financed by a simpler, or no traditional heating system Tilläggsisolering 1.6 U-value of wall (W/m²K) Economical insulation? 1.2 1 0.8 d 0.6 0.4 0.2 0 0 50 100 150 200 250 300 350 400 450 500 550 600 Tilläggsisoleringens tjocklek d (mm) Thickness of added insulation, d (mm) Helena Bülow-Hübe 8 AEBF01: L4 Effect of thermal bridges Cantilevering balconies The extra heat flow is decribed by: Ψ·ll (W/K) where Ψ (psi) Ψ l Intermittent insulation is the ”linear thermal transmittance coefficient” (W/mK) is the length of the thermal bridge (m) Other problems? Low surface temperature • Poor thermal comfort • Dirt accumulation Wood-slab detail poor – good? Ψ Ψ Källa: Värme och Fukt, K Sandin, LTH How large is the effect of thermal bridges? • Competition for housing development Majrovägen, Stockholm, 1990 • Aim to stimulate development of buildings with low energy use and good indoor climate • Three winners: – Svenska bostäder/BPA – HSB/Ohlsson & Skarne – NCC-Stockholm Helena Bülow-Hübe Without respect to thermal bridges Energy use (kWh/m²,a) Heating BPA HSB NCC 67 27 50 Elec. for operation 28 35 32 Household elec. 19 24 18 Total 113 86 100 9 AEBF01: L4 With and without thermal bridges Energy use (kWh/m²,a) BPA HSB NCC Without thermal bridges 113 86 100 With thermal bridges 115 104 106 Increase (%) 1.8 21.1 6.2 Per Levin & Mao Guofeng, Bygg & teknik 3/94 Exam-work regarding the effect of thermal bridges in houses with concrete structures Examples of serious thermal bridges Source: Köldbryggors inverkan på energianvändningen Jimmy Svensson och Andreas Westberg (2006). Wall element Horisontal cut prefab. wall Temperatures Details between prefab. wall and slab at bay window Vertikcal cut bay window Temperatures Equivalent insulation thickness = 163 mm (compare 220) Helena Bülow-Hübe 10 AEBF01: L4 Psi=0,63 W/mK Large increase in demand for delivered energy! Kv. Sutaren 90 Edge of slab kWh / kvm, år 80 Psi=0,95 W/mK 70 23 60 20 50 Med köldbryggor 40 Utan köldbryggor 30 55 48 20 10 0 20 grader 22 grader Inomhustemperatur Increase is over 40 % !!! Bay window Kuldebroer. Tabeller med kuldebroverdier. Del I og II. www.byggforsk.no Thermal storage capacity wall section: d1 d2 series of electrical resistances and capacities: d3 brick brick min.wool C = heat capacity (Ws/K) m = mass (kg) c = spec. heat (Ws/kg,K) ρ = density (kg/m3) http://bks.byggforsk.no/index.asp?docNumber=471017 Material ρ (kg/m3 ) c (J/kg,K) 1000 4200 (1cm thickness) 42 Steel 7800 500 39 Concrete 2400 900 22 Ice 917 2200 20 Brick 1500 800 12 Wood 500 1500 7.5 Gypsum 900 800 7.2 Lightweight concrete 500 1000 5.0 4.8 Mineral wool Air 280 1700 15-150 800 0.4 1.2 1000 0.012 Helena Bülow-Hübe R2 C1 C2 R3 C3 per m² wall: C = ∑m⋅ c = ∑ρ ⋅ d ⋅ c ρ·d·c (kJ/m²K/cm) Water Wood wool cement R1 Effective thermal capacity Outer wall Temp Inner wall T1 T2 Tout 11 AEBF01: L4 Brick wall or stud frame? Effective thermal capacity Internal insulation • About the choice and effect of structure materials on thermal climate, energy use and costs in schools External insulation Temp T1 T2 Tout Exterior wall: heavy - light Värmebehov (kWh/m²,år) Heavy or light walls? Heating demand (kWh/m²a) – Exam. Work by Holmberg & Landfors (1997), Avd f installationsteknik, LTH 100 årsenergi 80 75.5 77.2 Brick Wood Tegel Regel 60 40 20 0 Inner wall: heavy - light Stomalternativ Choice of structure system Sommarfallet Cost comparison Cost (kr/m²BRA) Production Brick Wood Difference 13071 12381 690 Operation 25 26 -1 Maintenance 0 13 -13 Insurance 7 18 -9 13103 12438 665 Total Helena Bülow-Hübe 12 AEBF01: L4 Rather brick than wood! • The heavy structure system has a higher initial cost (production cost) • It is paid-back in 28 years, i.e. it is cost effective if used longer than 28 years Life-cycle perspective of energy use Energy used for production & transportation of materials used at erection and demolishing Energy use for operation during the entire life-time of the building – Normally 33 years are used for writing off costs for school buildings • How can better comfort be valued? Study of 4 multi-family buildings (SE) • Erected in 1996, different but yet all typical of the time • Various choices of foundation, structure systems, size, insulation levels (Uavg=0.26-0.44) and ventilation systems – Adalberth, K, m fl (2001). Life Cycle Assessment of four Multi-Family Buildings. Int. J of Low Energy and Sustainable Buildings. Vol 2, 2001-2002 http://bim.ce.kth.se/byte/leas/ Analysis of the effects on: • • • • • • Global warming Acid rain (försurning) Eutrophication (Övergödning) Ground-level ozone production Toxicity (for humans) Energy use Helena Bülow-Hübe LCA-analysis of the following: • Production of materials for new production and renovation • Transports during building phase, renovation, and demolishment • Erection and demolishment • The building’s use (assumed to 50 years) – The energy use of the building with a mix of energy sources for the supply Results LCA analysis • The operation phase accounts for the largest environmental threat, approx 70-90% • The production phase has little significance, 10-20% of the total environmental load the choice of structure systems have only small environmental effects 13 AEBF01: L4 Summary • Use good insulation materials (i.e those with a low lamda-value, gives a lower Uvalue) • The better the house is insulated, the more important is the design of construction details • Thermal bridges must be included in the total energy balance of the building Tung stomme ger jämnare inneklimat men sparar inte mycket energi • Störst påverkan på operativ temperatur, dvs upplevt inneklimat • Årsenergibehovet för tung stomme kan förväntas vara något lägre, ca 85-95% av behovet för lätta stommar (100%) • Även trä har relativt stor värmekapacitet, och kan utnyttjas för värmelagring (massiv träkonstruktion) The operation phase is the most important! Tillverkning 15% production operation Användning 85% Helena Bülow-Hübe 14