Resan till jordens inre Athanasius Kircher(1665) Mundus Subterraneus Jules Verne (1864) Nuvarande schematisk bild av jordens inre Temperatur i jordens inre Tryck och densitet profiler i jordens inre Tryck i jordens inre 350 12 300 10 250 8 200 6 150 4 100 50 outer core mantle 0 inner core 2 0 0 1000 2000 3000 4000 5000 6000 Depth (km) 1 GPa = 100 000 N / cm2 järn 0 GPa järn 364 GPa Density (g/cm3) 0.1 GPa 3 GPa 364 GPa 550 GPa 2 TPa 100 TPa 30 000 TPa Pressure (GPa) Djupaste hav Industri Max. tryck i Jorden Diamancell Max. tryck i Jupiter Explosion av kärnvapen Solens kärna 14 400 Studier av jordens inre med hjälp av seismiska vågor Density, pressure and gravity within the Earth Key questions of the Earth’s deep interior rely on high pressure experiments fältspat Silikater olivin pyroxen kvarts granat hematit (Fe2O3) koksalt (NaCl) pyrit (FeS2) gips (CaSO4 . 2H2O) Subduktionszon (neddykningszon) - en långsmal zon i jordskorpan längs vilken två litosfäriska plattor kolliderar varvid den ena tvingas ned i manteln Vad händer med strukturen av en silikat mineral när tryck och temperatur ökar vid neddykning i subduktionszonen? gips (CaSO4 . 2H2O) Vatten i jordens inre Range of water concentrations in mantle-derived samples clinopyroxene orthopyroxene garnet olivine 0 200 400 600 800 1000 ppm H2 O Olivine, enstatite, diopside and garnet make up 95% of the upper mantle. They all contain water. 1200 1400 • • • Oceans cover 71% of surface Only 0.025 % of Earth’s mass Chondrites contain 0.10% H2O Fasövergångar hos olivin olivin quartz Coesite inclusions in Pyrope. Size of Pyrope is about 10x7 mm Coesite inclusion in garnet of eclogite sample Coesite is a form of silicon dioxide that is formed when very high pressure (2–3 gigapascals) and moderately high temperature (700 °C) are applied to quartz. Coesite was first created by in 1953. In 1960, coesite was found by Eugene Shoemaker to naturally occur in the Barringer Crater, which was evidence that the crater must have been formed by an impact. The presence of coesite in unmetamorphosed rocks may be evidence of a meteorite impact event or of an atomic bomb explosion. In metamorphic rocks, coesite commonly is one of the best mineral indicators of metamorphism at very high pressures (UHP, or ultrahigh-pressure metamorphism). Such UHP metamorphic rocks record subduction or continental collisions in which crustal rocks are carried to depths of 70 km or more. Coesite also has been identified in eclogite xenoliths from the mantle of the earth that were carried up by ascending magmas; kimberlite is the most common host of such xenoliths. The molecular structure of coesite consists of four silicon dioxide tetrahedra arranged in a ring. The rings are further arranged into a chain. This structure is metastable within the stability field of quartz: coesite will eventually decay back into quartz with a consequent volume increase, although the metamorphic reaction is very slow at the low temperatures of the Earth's surface. Stishovite – a high pressure polymorph of SiO2 The structure is dense-packed. Unlike in quartz, where Si-O are arranged in a tetrahedral coordination, in stishovite each silicon atom has 6 oxygen neighbours (octahedral coordination) Tiny (< 1 mm) greyish-white, roundish aggregates of the high pressure mineral Stishovite on a matrix of Magadiite-Kenyaite-Coesite. Field of view 3 mm. The source of 'forming' the Stishovite was extreme heat by an meteorite impact near Bisbee, Arizona. The exact location and the year of impact is unknown. Examples of some high pressure – high temperature phase diagrams of minerals determined in laboratory Phase diagrams depict P-T ranges of stability of various crystallographic forms of minerals. Phase diagram of MgSiO3 (At ambient conditions, MgSiO3 represents mineral enstatite, belonging to the pyroxene group of silicates) Examples of some high pressure – high temperature phase diagrams of minerals determined in laboratory Phase relationships for SiO2 (quartz at ambient conditions) Phase diagram of NaAlSi3O8 (feldspar albite at ambient conditions) Diamantcell – ”öppnar ett fönster” till jordens inre Tryck = kraft / yta Prov i diamantcell Laseruppvärmning av material i diamantcell Laseruppvärmning av material i diamantcell iron at high pressure in diamond anvil cell Bilder på glödande provet 50 microner Omvandling av grafit till diamant i diamantcell vid högt tryck och temperatur Fasdiagram av kol Determination of crystal structure by x-ray diffraction Fig. 5.06 W. W. Norton By analyzing diffraction pattern, crystal structure of mineral can be determined Synkrotron anläggningar används ofta för högtryckstudier. Synkrotron i Argonne, USA. Synkrotron i Grenoble, Frankrike. Discovery of post-perovskite transition in MgSiO3 - A new paradigm for core-mantle boundary CMB 4500 Murakami et al., Science (2004) 4000 Temperature (K) 3500 7.5 MPa/K 3000 2500 2000 1500 1000 Orthorombicperovskite Post-Pv 500 error ~5 GPa 0 70 80 90 100 110 120 130 140 150 Pressure (GPa) Valley bottom Hill top ~8 GPa ~250 km D” lager MgSiO3 perovskite Post-perovskite Si Mg Kristallstruktur av post-perovskit Si Mg Perovskite Post-Perovskite The dominant mineral on the Earth Forms 150 km thick layer adjacent to the core Framsteg i forskning om jordens inre Year-points mark the time and depths, for which corresponding experimentral pressure-temperature conditions were reached in the laboratory. Modern tomographic 3-D image of the Earth. Colors encode speesd of seismic waves; blue for faster-than average; red for slower-than average speeds. These variations are connected to changes in temperature and/or chemical composition.