The Gallejaur Structure Excursion guide by Map showing the Gallejaure area. Karta över Gallejaureområdet. Excursion sites in the Gallejaure area. Exkursionslokaler i Gallejaureområdet. COPYRIGHT: Bilden på försättsbladet är framställd med hjälp av SGU:s flygmagnetiska databas Bilden på sidan 9 är framstäld med hjälp av SGU:s regionalgravimetriska databas. Copyright för ovanstående Sveriges Geologiska Undersökning. För kartillustrationer i detta dokument gäller: Ur Vägkartan © Lantmäteriverket Gävle 2002. Medgivande M2002/2680. Excursion Guide Page 2 Informationsblad om terrestriska meteoritimpakter Robert Liljequist, Ecominas. English summary see page 6. Varje naturligt fast föremål som faller ned från rymden på jorden benämns meteorit. Det uppskattas att ungefär 500 ton kosmiskt stoft varje dag kommer in i jordens atmosfär. Endast omkring 500 meteoriter större än 10cm i diameter överlever varje år passagen genom luften. Som mest hittas och tillvaratas 5 meteoriter årligen. Antalet kända meteoriter från olika delar av världen uppgår idag till drygt 2 200. Flera meteornedfall har bevittnas – enbart i USA har man iakttagit över 760 nedfall. Det första meteornedfallet i Sverige från vilket stenar blivit tillvaratagna, inträffade nyårsdagen 1869 i trakten av Hessle, 3 mil utanför Uppsala. Nedfallet finns livfullt beskrivet i litteraturen. Den andra oktober 1951 för en 300 gram tung meteorit ned i Århus i Danmark. Vid nedslaget gick den sönder i fyra bitar. Det äldsta med säkerhet bevittnade nedfallet ägde rum i Frankrike den 18 november 1492, men det dröjde ända fram till mot slutet av 1700-talet innan vetenskapen accepterade det faktum att det föll ned stenar från rymden. Mer eller mindre väl bevarade kratrar på jordens yta minner om forna meteoritnedfall. Det kanske bästa exemplet på en stor cirkulär krater med en väl utbildad rand är Barringer Crater (tidigare känd som Meteor Crater) från Canyon Diablo i Arizona. Diametern på denna krater är 1 200m och den når ned till 180 meters djup. Randzonen höjer sig 46m ovan den omgivande platån. Bergartsfragment ligger utspridda utanför kratern över en radie av 10km från kraterns centrum. Tusentals järnfragment har uppsamlats från omgivningarna, sammanlagt till en vikt av 20 ton. Ett av fragmenten finns utställt på den mineralogiska avdelningen på Riksmuseet i Stockholm Vetenskapsmän menar att en meteorit som varit i stånd att bilda en krater av detta format måste ha splittrats och delvis förångats vid nedslaget. I Australien har man funnit 4 välbildade kratrar där järnfragment påträffats. Totalt har endast 8 kratrar eller kratergrupper med järnmeteoriter hittats. Dessutom är omkring 45 kratrar utan meteoritfragment kända. Längre fram beskrivs stora strukturer på jordytan - utan bibehållna kratrar - som uppkommit genom nedslag av större kroppar. Mycket sällan har människor skådat nedfall som resulterat i en krater av mätbar storlek. En av dessa var den sibiriska ”Sikhote Alin” som föll den 12 februari 1947. En gångformad krater på 28m i diameter bildades och det största järnfragmentet vägde 1 800 kilo. Sovjetiska vetenskapsmän har räknat ut att det rörde sig om en asteroid som färdades med en hastighet av 40 kilometer i sekunden. I Brasilien inträffade den 13 augusti 1930 ett starkt ljus- och ljudfenomen i Amazonas. ”Solen blev blodröd och ett mörker spred sig över allt och alla” berättar ett ögonvittne. Kratern besöktes för första gången av forskare i juni 1997. Kratern uppmättes till 1.2km i diameter men endast kratervallen i hård röd lera återstod. Den största kända enskilda meteoriten är Hobameteoriten (se bild) som hittades i sydvästra Afrika. Den väger 66 ton och mäter 3x3x1m i omfång. De i storlek fem nästföljande järnmeteoriterna väger ungefär hälften av Hobarmeteoriten. Den största kända stenmeteoriten väger en tredjedels ton. De katalogiserade meteoriterna som upplockats från jordytan visar sig bestå till 94% av stenmeteoriter, till 4.5% av järnmeteoriter och till 1,5% av stenjärnmeteoriter. Page 3 Excursion Guide Meteoriterna utgör de äldsta prov vi känner till från vårt solsystem. Åldersbestämningar som har utförts med hjälp av isotopförhållande mellan uran och bly, rubidium-strontium och kalium-argon pekar mot en gemensam ålder. Bildningstiden uppskattas till 4,5 miljarder år och anses vara födelsetiden för vårt solsystem. Det anses troligt att meteoriterna stammar från skilda delar av den yttre rymden, men man vet att de flesta asteroider ligger i ett bälte mellan planeterna Mars och Jupiter. Omkring 2 100 asteroider med en storlek över 1 kilometer anses kretsa i jordnära banor. När en asteroid med en hastighet av cirka 30 kilometer/sekund kolliderar med jorden uppstår en krater som är cirka 20 gånger större i diameter än asteroidklumpen. Händelsen i Tungaska den 30 juni 1908 orsakade en förstörelse över en yta som täckte en radie av 10km. Nedslagskroppen exploderade innan den nådde jordytan men mindre bitar åstadkom små kratrar på 10-tals meters diameter. Det kan vara intressant att veta att ozonhalten i atmosfären minskade med 30% som en följd av händelsen i Tungaska. Vid ett större nedslag sker under ett mycket kort förlopp olika processer som kan indelas i tre faser. • • • Under en kompressionsfas som varar några sekunder förångas den inkommande meteoritkroppen medan berggrunden delvis smälter och delvis krossas. Trycket orsakar förändringar i kristallfaserna i olika mineral. Diaplektiskt glas bildas och högtrycksförändringar i kvarts ger upphov till coesit och stishovit, kol övergår till diamant, och uppsmältning och gasbildning äger rum. Graniter smälter vid 60 Gpa (Gigapascal), basiska bergarter vid 80 Gpa och sedimentära bergarter vid 30 Gpa. Under en urgröpningsfas (excavation phase) som varar cirka 100 sekunder bildas en fiktiv krater (transient crater) samtidigt som material kastas ut ur kratern, ofta ballistiskt. Kaotiska materialströmmar sker utmed kraterytan (ground surge). Under en påföljande modifikationsfas, som varar minuter till timmar, sker de slutliga avlagringarna och förändringarna i och omkring kratern. Smältan och så kallade klastiska breccior blandas, en central dom bildas, kraterranden rasar in, smälta med bergartsfragment injekteras i kraterbotten och hela strukturen deformeras. Resultatet blir en komplicerad kollapsstruktur med en centralt upplyft bergartsparti i mitten, omgivet av en sänka och ytterst terassbildningar. Idag har man identifierat och övertygande bevisat förekomsten av mellan 150 och 200 kända impaktkratrar på jorden. Av dessa har endast 10% identifierats under den Prekambriska tiden, en era som omfattar omkring 88% av jordens ålder. Denna brist på impaktkratrar jämfört med det enorma antalet kratrar vi kan se på alla våra närliggande himlakroppar beror på huvudsakligen två faktorer. För det första eroderar och förstörs mycket av nedslagets utkastade material och kraterform under de långa tidsrymder som följt nedslaget. Jordens yta är extremt dynamisk jämfört med våra grannar i solsystemet. För det andra är det mycket få geologer som tillägnat sig de senaste decenniernas framsteg inom impaktforskningen och därför inte vet hur man skall läsa berggrunden när den uppvisar tecken på att ha varit utsatt för de förstörelseeffekter som uppstår vid ett stort nedslag. Det är knappast en överdrift att hävda att den moderna forskningen kring planetära och terrestriska meteornedslag har orsakat en vetenskaplig revolution lika stor som när kontinentaldriftsteorin accepterades. Då liksom nu möts nya idéer – hur välgrundade de än må vara – av stor skepsis och ofta av smädande uttalande från de forskare som inte förmår sig ta del av nya forskningsrön. Det är lättare att behålla sin världsbild intakt. I Sverige har, främst genom Frans E Wickmans pionjärsinsatser, flera nedslagsstrukturer kunnat påvisas och verifieras: Siljan (ca. 55km i diameter), Dellen (20km), Lockne (>7km), Mien (7km), Granby (3km), Tvären (2km), Hummeln (1km), Björkö (9km), och Åvike (9.5km) Flera av dessa har slagit ned i det Ordoviciska havet för ungefär 450 miljoner år sedan (Lockne, Granby,Tvären). Excursion Guide Page 4 Ett par stora nedslagsstrukturer har nyligen upptäckts och är på väg att verifieras: Gallejaur (ca. 50km)och Doubblon (kanske 90km). De hittills största nedslagstrukturerna finns i Sydafrika (Vredefort – ca 250 km diameter) och i Kanada (Sudbury – ca 200km diameter). Bägge dessa stora nedslagsstrukturer har associerats med malmbildning och stora delar av världens produktion av nickel och guld och i mindre utsträckning koppar och platinametaller har dessa himlakrockar att tacka för sin tillkomst. Gallejaurstrukturen uppmärksammades redan på 1960-talet genom att den centrala delen utgörs av en mycket magnetisk och tung kropp. Tyngdkraften svarade dåligt mot den specifika vikten av ytbergarten – en granitliknande bergart som kallas Gallejaursmonzonit. Den kraftigaste magnetismen ligger i en ring runt monzoniten och bergarten, som bland annat blottas i gamla Skellefteälvsfåran, diagnosticerades (på grund av sin gröna färg och välkristalliserade korn av amphibol) som en andesitbergart och benämndes Vargforsandesiten. De karterande geologerna hade svårt att förstå hur denna vulkaniska bergart kunde vara så bemängd med granitfragment. Historiskt sett har de flesta bergartssmältor som uppstått genom meteornedslag tolkats som vulkaniska bildningar: i Mien kallades de ryolit, i Dellen och i Lappajärvi benämndes de andesit och i Gardnos i Norge tolkades de som vulkaniska explosionsbreccior. Ett annat fenomen omkring Gallejaur är förekomsten av s.k. authigene brecciering, bergarterna har spruckit upp och formar en puzzleliknande bildning, där man nästan tror sig kunna placera tillbaka bitarna till en hel bild. Detta fenomen är mycket utbrett och återfinns inte i övriga delar av Skelleftefältet. Den märkligaste fyndplatsen är Mensträsk och här myntades på 20-talet begreppet Mensträskbreccia. Mellanrummet mellan puzzlebitarna har fyllts ut med karbonat och detta tolkades som en urgammal vittringsrest i berggrunden. Denna typ av uppkrossning är vanlig i de bergarter under kratern som drabbats av chockvågor. Identiska företeelser finns i Rieskratern vid Nördligen i södra Tyskland, under den lilla kratern i Gardnos i Norge och vid Åvike utanför Sundsvall. I hela Skelleftefältet – från Skellefteå i öster till Kristineberg i väster – är bergarterna ganska ordentligt omvandlade (metamorfoserade) och ligger uppresta på kant. Så är inte fallet med bergarterna kring Gallejaur. De ligger i ett mer eller mindre horisontellt läge och pålagrar de äldre skelleftevulkaniterna och sedimenten. Detta observerades redan på 50-talet av observanta geologer som Erland Grip och Gunnar Kautsky. Erland Grip tyckte det var märkvärdigt att de yngre sedimenten, som ligger avlagrade i Gallejaurstrukturen, befann sig i ett så väl bevarat skick. Sammanfattande kan man – inte utan fog – säga att bergarterna kring monzoniten mitt i Gallejaurstrukturen består av så gott som uteslutande sönderkrossade bergarter och bergarter med olika typer av fragment (polymikta breccior). Och detta förklaras enligt min uppfattning bäst av att en stor asteroid krockade med denna del av jordskorpan för drygt 1 850 miljoner år sedan. Page 5 Excursion Guide The Gallejaur Structure, Northern Sweden. Robert Lilljequist, Ecominas Rocks, interpreted as impactgenerated lithologies, occur in a large area surrounding the Gallejaur magnetic structure at latitude 65o10´/longitude 19o30´ in northernmost Västerbotten County in northern Sweden. These rocks comprise a variety of different types of breccias: authigenic/autochthonous monomict breccias from the underlying rock units (monomictly brecciated basement), parautochthonous, monomict breccias, and polymict melt breccias. No shock metamorphic minerals have yet been identified. The Gallejaur structure is located in the central part of the Skellefte mining district in the Precambrian Baltic Shield. The ca. 1.9 Ga old Skellefte district is an extensively mineralised, mainly felsic, submarine volcanic belt. The predominant lithologies are acid to mafic volcanic and volcanoclastic rocks, interbedded with, and overlain by, graphitic schist and greywacke. The rocks, which in the present article are described as impact-generated, have been called the Vargfors Group and overlie the Skellefte volcanics and sediments with an angular unconformity. In general, the older rocks are deformed and folded, which results in a more or less vertical position, whereas the younger rock sequence is flat lying and undeformed outside of the regional shear zones. The youngest rocks in the area, intruding the Skellefte district supracrustals and probably the impact-generated rock, are A/I-type granitoids belonging to the Revsund-Adak granite suite, which have been dated at ca. 1.80 to 1.78 Ga. The highly magnetic ring around the centre of the structure is interpreted as an impact melt body with varying amounts of more or less absorbed clasts of various basement lithologies. Density measurements indicate a mafic composition, implying that the original rocks were andesitic to basaltic. The gravity anomaly of the central rise region, above +15 mgal (150 gu), is high. This gravity high is surrounded by an encircling gravity low of about –20 mgal amplitude. The central uplift area is between 10 and 12 km in diameter according to the gravity and magnetic anomaly maps, which corresponds to a final crater diameter of 50-60 kilometres, and a transient cavity of about half that size. In the centre of the Gallejaur ring structure a fine-grained crystalline rock of monzonitic composition is found, which is loaded with rounded clasts of volcanic character. The origin is not yet established, but the lack of deformation and location within the supposed central uplift indicate that the monzonitic rock could have an origin as crystallised impact melt. The Gallejaur monzonite has been dated at 1873 +/- 10 Ma, which is taken as the age of the impact event. The monzonite and an underlying porphyritic rock seem to be differentiates of one melt body. In a northwest-southeast zone across the structure occur water-deposited immature sediments (pelitic, arkosic and conglomeratic), which are interpreted as fill. The original impact structure has been affected by later deformation events, which are mainly represented by shearing, faulting and erosion. The enigma is that we could have an impact event within an active volcanic region. Most of the fragments (clasts) are of volcanic origin. This has influenced the geologists to interpret all of the monomict breccia rocks as volcanic or volcanoclastic. The magnetic rocks around the Gallejaur “monzonite” are referred to as Vargfors andesite. However, if we avoid looking only at isolated Excursion Guide Page 6 outcrops and instead observe the distribution of the different rock types, we will find that their formation from volcanic events is difficult to prove. The geology of the area surrounding the Gallejaur melt sheet is very different from what we can observe in the eastern and western parts of the Skellefte district. The intention with this guide is to apply a different view on the geology and considerate a new model for the formation of the rocks within an about 25km radii from the centre of the Gallejaure magnetic and gravimeter anomaly. This might result in new genetic interpretations of several of the ore deposits within the structure, which in its turn might lead to the discovery of new mineral deposits. Page 7 Excursion Guide Location map of the Gallejaure structure Excursion Guide Page 8 GRAVITY MAP GALLEJAURE. Gravity map over mapsheet 23J Norsjö. Red is gravity high and blue represents gravity low areas. The gravity hight in the southwest corner is caused by a ultramafic intrusion. Page 9 Excursion Guide Excursion Guide Page 10 Magnetic lineaments around the Gallejaure structure and assumed crater margin. Page 11 Excursion Guide Brecciated target rocks, allogenic (polymict breccia), impact melt and infill crater sediments in the Gallejaure Structrue Excursion Guide Page 12 The Gallejaur Structure The Holmtjärn Mine and Granbergsliden ➔ ➔ At Holmtjärn the outcrop 100m to the north consist of cm-sized pieces forming an autochthonous breccia, weakly mineralised. At the outcrop 60m to the SE a volcanic rock with dm-sized rounded clasts is exposed (monomict?). Interpretation: The breccia formations present in the Holmtjärn area indicates that this is a huge brecciated block either downslided from the central uplift area or drawn in from the outer crater wall. The sulphide mineralisation is supposedly formed before the impact event but then fractured into several parts and enriched by hydrothermal solutions after the impact event. Alternative interpretation: Volcanic and hydrothermal breccia forming a favourable environment for ore deposition. At the outcrops at Granbergsliden a monomict breccia with plastically deformed clasts of dm-size is exposed. Interpretation: Basal impact breccia with exposed to high temperature and pressure. Alternative interpretation: A subaqueous mafic volcanic centre consisting of a fire fountain deposit and hyaloclastites with pillow lobes and closely packed pillow lava. Page 13 Excursion Guide How to get there: From road 365 take the road to Kusfors-Svansele. After 2,8km turn north at the sign G2G HOLMTJÄRN and follow the road straight to the end (1.6km), passing the old mine and the restored new mine. 100m north of the end of road there is a small outcrop (about 2 square meters). To get to the outcrop at Granbergsliden, turn of the road to Holmtjärn after 600m and drive to the road end (1.6km) on a gravel road damaged by car tracks. From road end walk 300 meters south. Co-ordinates: Holmtjärn: 1676972E-7228326N and 1677030E-7228172N Granbergsliden: 1677684E-7226595N Plastically deformed monomict breccia. Granbergsliden 1677684E/7226595N Mineralised authigene breccia at Holmtjärn Mine. 1676972E/7228326N Excursion Guide Page 14 The Gallejaur Structure Rackejaurgruvan and Rackejaurheden ➔ ➔ At the northwestern corner of the Rackejaur open pit there are exposures of a polymict breccia with granite clasts (Kautsky 1957, p.48) in a granite detritus matrix.. Kautsky describes densely packed small granite clasts of 3-8cm size. This breccia continues eastwards onto the massive sulphide ore body, but with increasing shearing of the breccia towards the deposit. Grip (1951,p.39) mentions granite clast-bearing rock in drill-cores from drill-holes penetrating the massive orebody. The granite clasts are of Jörn type, and the problem to solve is how they were transported 20 kilometers from their source. Interpretation: The polymict breccia is formed by fall-in ejecta related to the crater formation. Alternative interpretation: Kautsky interpretes the “conglomerate” as fluviatil deriving from nonexposed granite massive. At Rackejaurheden an outcrop with autochthonous and monomict matrix supported breccia can be seen to overly feldspar porphyry volcanic rocks. A gradational transition from practically undeformed volcanic rock to autochthonous brecciated rocks to monomict breccia with up to half-meter large clasts can be seen. Page 15 Excursion Guide Interpretation: The brecciation forms part of the crater floor resulting from an impact even. Alternative interpretation: subvolcanic intrusion/lava with a texture that indicate an “in-situ hyaloclastite” fragmentation of the lava through cooling. How to get there: From Malå to Rackejaur the distance is 25 km. The Rackejaurheden locality lies further 3 km north of the mine. Co-ordinates: Rackejaur: 1657200E-7230900N. Rackejaurheden: 1657555E-7233954N Grip, E., 1951: Geology of the sulfide deposits at Mensträsk and a comparison with other deposits in the Skellefte district. SGU Ser C No 515, 55p Kautsky, G., 1975: Ein Beitrag zur Stratigraphie und dem Bau de Skelleftefeldes. SGU Ser C, No 543. Polymict breccia at the Rackejaure Mine. 1657200E/7230900N. Authigene (Autochthonous) brecca in bolder at Rakkejaureheden Excursion Guide Page 16 Page 17 Excursion Guide Monomict breccia at Rakkejaureheden. 1657600R/7233950N. The Gallejaur Structure Mensträsk Breccia ➔ ➔ ➔ The Mensträsk breccia has since long puzzled the geologists. G Kautsky (1957) refers to the Mensträsk conglomerate and felsite breccia. Kautsky observed its flat-lying position with weak undulations on top of felsitic altered volcanic rocks. The breccia grades upward into a monomict to a polymict breccia with clasts of felsite, quartz porphyry and sediments. Both Kautsky and Grip (1951) interpret the breccia as a sedimentary weathering breccia. The breccia matrix is often filled with carbonate material. Interpretation: The Mensträsk breccia is interpreted as an autochthonous breccia formed in the upper parts of the crater floor from the Gallejaur impact event. The autochthonous brecciation has a very widespread distribution around the Gallejaur Structure but has not been found in other parts of the Skellefte district. The brecciation is practically identical to similar crater floor breccias at e.g. the Ries Crater in Germany. Alternative interpretation: The Mensträsk breccia was formed as a weathering breccia thus indicating a major hiatus in the Skellefte district. The flat position indicate a major angular unconformity. Excursion Guide Page 18 How to reach the outcrops: From Malå to Bäverhult (42km), continue the road 365 towards Glommerträsk for 6km to the Rakkejaur road to the left (west). Follow the Rakkejaur road for 6km and park at M located at a topographic height. Here lie several boulders with autochthonous breccia with acid volcanic fragments in a jig-saw puzzle structure with carbonate infilling. The fragments are from cm to dm scale in size. Co-ordinates: 1666905E and 7221755N At 1.2km E of the boulder locality, following the road towards road 365, a foot-path starts just to the left of a row of dustbins. Following the foot-path 150m occurs local bedrock/large boulders with carbonate-cemented autochthonous breccia. Co-ordinates: 1667336E and 7220753NContinuing the foot-path further 400m to the north, crossing a small stream, flat outcrops occur on both sides of the path. To the right acid volcanic rocks, slightly mineralised. To the left (east) the same rocks overlain or grading into Mensträsk breccia. Co-ordinates: 1667607E and 7220925N. Grip, E., 1951: Geology of the sulfide deposits at Mensträsk and a comparison with other deposits in the Skellefte district. SGU Ser C, No 515, 52pp. Kautsky, G., 1957: Ein Beitrag zur Stratigraphie und dem Bau des Skelleftefeldes. SGU Ser C, No 543. Boulder of Mensträsk breccia, 1666905E/7221755N. The matrix is partly filled with carbonates. Page 19 Excursion Guide Mensträsk breccia with carbonate infilling. 1667336E/7220753N. Autochthonous breccia S of Mensträsk, same coordinates as above. Excursion Guide Page 20 The Gallejaur Structure Autochthonous breccia at Stenheden ➔ Autochthonous brecciation has partly affected the outcrops at Stenheden. The brecciation overprints the silicified acid volcanic rocks. At the outcrop local jig-saw puzzle structures can be appreciated. Interpretation: Brecciation of the original crater floor, affecting the target rocks. Alternative interpretation: Some kind of hydrothermal brecciation. How to get there: From road 365, turn off at the road signed MAURLIDEN 5. After 1450m turn right on a small forest road, and continue 500m. On the left (east) side a small outcrop is seen ca 50m from the road. Co-ordinates: 1672197E-7223313N Page 21 Excursion Guide Autochthonous (authigene) breccia similar to what is seen at the Stenheden outcrop Excursion Guide Page 22 The Gallejaur Structure Monomict breccia SE of Maurliden ➔ A monomict breccia is seen with plastically deformed clasts of dm-size, some with vesicles. The rock is similar to the rocks at Granbergsliden. The weathering has partly obliterated the structures. Interpretation: The monomict breccia is thought to have been originated as more or less in-situ rotated up-heated clasts close to the bottom of the impact crater. Alternative interpretation: Subaquatic fire fountain deposits close to synvolcanic faults. How to get there: Drive to the Maurliden mine (3.5km from road 365), and turn right just before the mine entrance. After 1.5km turn right on a forest road and follow the road 1.9km. Here goes a road to the right, uphill a forest clearing. Park and walk the small road for 100m. Co-ordinates: 1675437E-7220278N. Page 23 Excursion Guide Monomict breccia with plastically deformed clasts. Outcrop southeast of Maurliden. 1675437E/7220278N Excursion Guide Page 24 The Gallejaur Structure Monomict breccia at Tistelmyran ➔ ➔ Monomict breccia is seen on a clearing to the left (north) of the road to the Maurliden Mine. At the first outcrop a monomict to autochthonous breccia is exposed with up to 0.5m large rounded clast. At the second outcrop the monomict clasts are separated by a greenish matrix material. Interpretation: The monomict breccia is thought to have been originated as more or less in-situ rotated clasts. Alternative interpretation: Subaquatic hyaloclastites with pillow lobes (not earlier observed in acid volcanic products). How to get there: The outcrops are located 2 kilometres from road 365, about 50m from the road to the Maurliden mine. Beware of mine trucks! Co-ordinates: 1673037E-7223660N and 1673426E and 7223544N Page 25 Excursion Guide Monomict brecca at Tistelmyran, W of the Maurliden Mine. 1673037E/7223660N. Monomict clasts separated by greenish and brownish material. 1673426E/7223544N. Excursion Guide Page 26 The Gallejaur Structure ➔ Polymict breccia at Maurträsket A polymict breccia is exposed at several small outcrops with mm-dm lithic clasts and mineral clasts, angular to subrounded in shape. The clasts are mainly from volcanic rocks. In order to protect the surface the moss vegetation has be uplifted and then replaced. Interpretation: The polymict breccia has been formed through downfall of earlier expelled ejecta or through a re-sedimentation of downfall ejecta. Alternative interpretation: Volcanic debris from various sources. How to get there: Drive to the Maurliden mine (3.5km from road 365), and turn right just before the mine entrance. Continue the road to just south of Maurträsket. The outcrop lies 50m uphill the road. Co-ordinates: 1675089E-7221917N. Page 27 Excursion Guide Polymict breccia at Maurträsket 16750890E/7221917N Excursion Guide Page 28 The Gallejaur Structure Monomict breccia N of the Mensträsk Village ➔ Monomict breccia with clasts of acid volcanic rock. The clasts are up to 2dm in size and angular to subrounded in shape. Interpretation: The breccia has been formed close to the crater floor from bedrock of local provenance. The formation is thought to have been originated as more or less in-situ rotated clasts. Alternative interpretation: Volcanic brecciation through eruption under sea level. Note: The monomict breccia has a very similar appearance at several localities distributed extensively, and mostly just above autochthonous brecciated bedrock grading into unaffected rocks. The formations appear to be in a sub-horizontal position. How to reach the outcrops: Drive north on road 365 to the signs indicating Rope Line and Bäckerudden. Follow this road 900meter, then turn to the right (northwards) between houses and barns. Follow the small gravel road 600m, just before a yellow-framed house (end of road). Co-ordinates: 1669808E-7224409N and 1669887E-7224346N Page 29 Excursion Guide Excursion Guide Page 30 Monomict breccia at Mensträsk, to the E of the road. 1669890E/7224346N. Monomict breccia at Mensträsk, to the west of the Road.1669800E/7224400N. Page 31 Excursion Guide The Gallejaur Structure Långtjärn ➔ This locality is included in the excursion guide as an example of breccia occurring in the northwest sector of the Gallejaur Structure. Outcrops in this area are scarce. Drill-holes 2-5 km south of the locality penetrates flat lying sequences of clast-rich breccia. At the Långtjärn outcrop a polymict clast-bearing rock occur with up to half a meter large clasts. Amygdaloid lava is represented as large clasts. It appears that some of the clasts are plastically deformed. Interpretation: Polymict impact breccia n.d. Alternative interpretation: Volcanic breccia or volcanoclastic debris formation. How to get there: From the road Sandträsk-Lidmyrliden take the gravel road to Långtjärn. After 1km the road crosses over some small outcrops. The road can be in bad shape. Co-ordinates: 1663315E-7244152N Excursion Guide Page 32 Polymict breccia at Långtjärn with deformed clasts. To the left a large clast of amygdaloid lava. 1663315E/7244152N. Page 33 Excursion Guide The Gallejaur Structure ➔ Högheden At the road there is an exposure of a polymict breccia with volcanic and granitic clasts in a dark matrix. A weak hydrothermal alteration and pyrite affect the rock and lichen growth has partly obliterated the rock texture. The clasts are best seen on a wet surface. Interpretation: Polymict impact breccia n.d. Alternative interpretation: Volcanic breccia or volcanoclastic debris formation. How to get there: From the road 365 (“old Military road”), turn left and drive 4km, passing the Högheden settlement. Co-ordinates: 1669400E-7243845N Excursion Guide Page 34 The Gallejaur Structure Storgrovan turbidites ➔ Polymict calcareous breccia and unsorted sedimentary debris are exposed at this locality. The carbonate-rich breccia is mostly covered by rich vegetation. The unsorted sediment is rich in schist fragments, up to 1dm in size and angular in shape. The metamorphic grade is low. Interpretation: The rocks are interpreted as crater infill sediments. Alternative interpretation: The turbidites have been formed in a basin as epiclastic debris flows. How to get there: The locality can be reached by driving the road on the north side of Skellefte River (from road 365) 6.5km. The outcrops are located at a curve on the road, close to a river bay. Co-ordinates: 1678418E-7223642N Page 35 Excursion Guide Storgrovan turbidite with cm to dm large clasts in an unsorted sediment with anguslar clasts. 1678418E/7223642N. Excursion Guide Page 36 The Gallejaur Structure ➔ Kölen turbidites and suevite (?) ➔ At the first location a rock with white clasts of cm to dm size is exposed. Streaky, shard-like fragments are common and the rock looks similar to an ignimbrite. The textures are best seen on a wet surface. At the second locality turbidites in a flat position are outcropping. Shale and gritty unsorted layers are represented in the outcrops. Interpretation: The rock is formed as a suevite with flattened melt clasts. The rocks in the second locality are interpreted as crater infill sediments. Alternative interpretation: The rock is originated as a volcanic ignimbritic rock. However the environment is subaquatic, and ignimbritic textures are not common in formations formed under water. The turbidites in the second locality are formed in a basin as epiclastic debris. How to get there: From the road to Mensträsk drive Road 365 1.2km northwards, and turn into a forest road in quite bad shape with many up sticking stones. After 1.7km turn to the right at the sharp curve. Just after the curve is a flat outcrop with white clasts and flattened fragments. To reach the other outcrop continue the road for about 1km, turn left(south) and continue further 1km to the end of the road (this part can be wet and difficult to access. The turbiditic sediments are Page 37 Excursion Guide outcropping on a forest clearing 150m SSE of road end. Co-ordinates: 1669670E-7225183N and 1668236E and 7224947N Suevite or Ignimbrite? Outcrop at Kölen 1669670E/7225183N Turbidite with Excursion Guide both unsorted and well layered beds. 1668236E/7224947N Page 38 The Gallejaur Structure ➔ Flat-lying turbidites at Vargforsdammen Tubidite sediments with clay clasts in a near horizontal position. Interpretation: The sediments have been formed as in-fill sediment within the crater depression. Rapid infill of the topographic depression combined with slumping and sliding contribute to a very unsorted product. If the impact took place in an aquatic environment the influx of sediments after the impact event would be very rapid and in part chaotic. Alternative interpretation: Sedimentary turbidity debris from various sources. How to get there: Follow the road from Nicknoret, at road 365, down along the present water course at about 7 kilometres. Co-ordinates: 1677657E-7222528N. Page 39 Excursion Guide Turbidites with pelitic and psammitic layers and broken pelitic beds. Southern side of the Vargfors Dam. 1677657E/7222528N Excursion Guide Page 40 The Gallejaur Structure Rörmyrberget ➔ Just beside the road is a flat outcrop with a mafic rock (amphibolite). A 10-20cm wide dyke with dark amphibolite phenocrysts cuts the deformed amphibolite. Interpretation: Impact melt injection dyke Alternative interpretation: mafic volcanic dyke How to get there: From the Glommersträsk road 365, turn left after the bridge over the Skellefte River. After 7.4km turn at the sign RÖRMYRVÄGEN and follow the road for 1.2 kilometres. Co-ordinates: 1668408E-7233280N Page 41 Excursion Guide Melt injection dyke in deformed and metamorphic amphibolites, Rörmyrberget. 1668408E/7233280N. Excursion Guide Page 42 The Gallejaur Structure ➔ Jörn Granite with dyke The road exposes a number of small and poorly available outcrops along the ditch. This is, however, one of the few outcrops where the Jörn granite lies in close contact with the Gallejaur “supracrustal” rocks. Jörn Granite is intruded by a dark fine-grained rock with amphibole phenocrysts, similar to the rocks around the Gallejaur “monzonite” The contact is outcropping, showing clasts of granite in the dark rock. Interpretation: Impact melt injection dyke into the Jörn Granite, demonstrating that this was part of the crater floor. Alternative interpretation: Mafic dyke How to get there: Follow Bredträskvägen (stems out from road 365) after 7km from the bridge over the Skellefte River. Follow Bredträskvägen 4.7km, passing a wooden bridge, to a small cottage. Co-ordinates: 1677500E-7230900N Page 43 Excursion Guide Melt injection dyke in Jörn granite, Bredträsket. Jörn granite in the lower part of the photo and a clast of Jörn granite in dark melt rock 10 cm NW of the compass. 1677500E/7230900N. Excursion Guide Page 44 The Gallejaur Structure ➔ Treholmsfors At the outcrops close to the river a greyish to grey green rock is outcropping, rich in angular to subrounded lithic and mineral clasts. Unfilled cavities (vugs) are also common. The rock is polymict and include granite clasts and clasts with concentric structure. Upstream the size and number of clasts increase. Hundred meters upstream the first locality there is a polished outcrop with a greenish rock with amphibole phenocrysts and “ghost” clasts. This type of rock has been called Vargfors Andesite. Interpretation: Impact melt with clasts Alternative interpretation: Volcanoclastic debris or clastic debris flow. How to get there: From the Glommersträsk road 365, turn left after the bridge over the Skellefte River. After 1.4km follow the road sign TREHOLMEN to the left. Drive 100m and continue straight ahead on a track that leads to a boulder stockpile platform with signs of a car tipping over the edge. From here walk 100m downstream to a small stream flowing into the Skellefte river course. Co-ordinates: 1672137E-7227770N Page 45 Excursion Guide Granite clast in melt rock. Treholmfors. 1672210E/7227838N. Breccia clast in melt rock. Treholmfors. 1672107E/7227838N. Excursion Guide Page 46 The Gallejaur Structure ➔ Skellefte River At this locality we can study perlitic textures on the polished outcrops, melt rock with cm-size clasts and clast-rich rock with 90% dm-sized clasts, mainly of granite. Interpretation: Impact melt with clasts Alternative interpretation: Sedimentary formed rocks or Vargfors Andesite (according to existing maps). Note: The perlitic texture must have been formed from cooling of a glassy matrix - which exclude a sedimentary origin. An andesite has not these types of inclusions. Other alternative interpretations are welcomed. How to get there: Follow the asphalt road, starting towards W from road 365, about 1.9km, turn left towards the river on a gravel road. After 1 300 meters from the start of the gravel road, park the vehicle at the red signs. Follow the red marked pegs down to the outcrops at the river. Co-ordinates: 1670635E - 7229154N (perlitic textures); 1670588E-7229155E (clast-rich with granite) Page 47 Excursion Guide Perlitic texture from hydration of glassy rock 1670634E-7229154N. Melt rock with cm size polymict clastsincluding granite 1670610E-7229155N Excursion Guide Page 48 Page 49 Excursion Guide Melt rock rich in subrounded granite clasts in dark matrix 1670580E-7229155N The Gallejaur Structure The Gallejaur “monzonite” ➔ The Gallejaur “monzonite” occupies the central part of the Gallejaur Structure. This central part has a high gravity anomaly that far exceeds the spec gravity of the “monzonite” At the locality the typical crystalline rock is exposed, a relatively fine-grained intrusive-like rock poor in quartz but rich in dark inclusions of cm to dm size. Interpretation: Recrystalized impact melt from a slowly cooled melt pod in the central part of the central uplift. Alternative interpretation: Differentiated magma in a caldera structure grading into heavier rock at depth. How to get there: Park the vehicle at a road entrance 8.5km from the bridge over the Skellefte River on the road 365. Follow the old abandoned road 100m N and then follow the red marking through a dense vegetation and over a small stream.(a 100m walk). Co-ordinates: 1674546E-7234875N Excursion Guide Page 50 Gallejaure “monzonite”, rich in mafic clasts 1674546E-7234875N Gallejaure “monzonite” from SKB drillhole. Page 51 Excursion Guide The Gallejaur Structure ➔ Gallejaur Dam exposure This is the only locality where part of the supposed central uplift is exposed. The road outcrop is dominated by a dioritic rock in which dykes and irregular massed of fine-grained dark material (pseudotachylites) occur. The relationship between the two rock types is best seen when the surface is wet. Pseudotachylites are either formed as friction melt or melting taken place as a result of pressure release. Interpretation: At larger impact structures the central part is uplifted as a central peak. Geological investigations of central uplifts of terrestrial complex craters shows that they are composed of deformed and fractured rocks that originally underlay the transient crater (Melosh 1989). Grieve et al. (1981) has shown that the stratigraphic uplift of the crater’s center (h) is related to the final crater diameter D by: h=0.06D1.1 where all distances are in kilometres. The rocks in the outcrop at Gallejaur Dam are interpreted as forming part of a central uplift. Alternative interpretation: The rock is part of a fault zone where the friction has created pseudotachylitic melt. Reference: H.J Melosh, Impact cratering - a geological process. Oxford Monographs on Geology and Geophysics No 11, 1989. Grieve, R.A.F. et al., Constraints on the formation of ring impact structures, based on terrestrial data. In Multiring Basins (Eds. PH Schultz and RB Merill), Proc. Lunar Planet. Sci. Conf 12A, pp.37-57. Excursion Guide Page 52 How to get there: Follow a gravel road eastwards from Dragnäs at road 365 to Glommersträsk. Drive through the old Village of Gallejaure at the border between the Västerbotten and Norrbotten Provinces. The exposure is covered by metal net to prevent the falling out of lose rock. Co-ordinates: 1669897E-7233338N Pseudotachylitic dyke in diorite. Gallejaure village 1669800E-7223500N. Breccia dyke with fine grained melt rock with diorite clasts Gallejaure village 1669800E-7223500N. Page 53 Excursion Guide Oblique view of the lunar far side photographed from Apollo spacecraft. Excursion Guide Page 54 Photo from lunar far side photographed from Apollo spacecraft. Page 55 Excursion Guide Schematic illustration of the formation of complex craters with either (a) central peaks or (b) peak rings. Uplift of the crater floor begins even before the rim is fully formed. As the floor fises further, rim collapse creates a wreath of terraces surrounding the crater. In smaller craters the central uplift “freezes” to form a central peak. In larger craters the central peak collapses and creates a peak ring before motion ceases. Schematically illustrates the for- mation of a complex crater and ils central peak or peak ring. Most of the details of this figure are de- rived directly from the geologic study ofterrestrial complex craters. One interpretative feature in- cluded in this illustration, however, is the depic- tio n of the floor uplift beginning beJare the rim has been completely excavated. A fully formed parabolic transient crater thus never develops be- cause the floor begins to rise almost as soon as the crater has stopped growing in depth. This type of collapse has been observed in laboratory-scale im- parts into strengthless materials (liquid water) and has appeared in recent numerical simulations of the excavation of large impact craters. Figuren illustrerar hur en komplex krater bildas och den centralt upplyfta höjdtoppen. De flesta av detaljerna i bilden baserar sig på studier av kratrar på planeten jorden. Det antas att upplyftningen av de centrala delarna sker redan när kratern gröps ur. Såväl den centrala höjden som kanterna av kratern kollapsar nästan omedelbart. Detta har kunnat simuleras i laboratorieskala. Excursion Guide Page 56 Hoba meteoriten i norra Namibia. Världens största meteoritklump på 80 ton, bestående av järn och nickel. Foto R. Lilljequist 1993. The Hoba meteorite in northern Namibia. The world’ s largest nickel-iron meteorite. The weight is 80 tonnes. Några av Gibbonsvärmens 72 meteoriter. De väger mellan 150 och 350 kilo vardera. Meteoritsvärmen slog ned i Namibia och styckena har hittats längs ett 300 km långt stråk. Foto R Lilljequist 1993 Some of the 72 meteorites from the Gibbon swarm in Namibia. Page 57 Excursion Guide Excursion Guide Page 58 Page 59 Excursion Guide Excursion Guide Page 60 Page 61 Excursion Guide Map showing the Gallejaure area. Karta över Gallejaureområdet. Excursion sites in the Gallejaure area. Exkursionslokaler i Gallejaureområdet. COPYRIGHT: Bilden på försättsbladet är framställd med hjälp av SGU:s flygmagnetiska databas Bilden på sidan 9 är framstäld med hjälp av SGU:s regionalgravimetriska databas. Copyright för ovanstående Sveriges Geologiska Undersökning. För kartillustrationer i detta dokument gäller: Ur Vägkartan © Lantmäteriverket Gävle 2002. Medgivande M2002/2680. Excursion Guide Page 62