. , . Nedanföljer en mycketkortfattadbeskrivningav Konstruktionoch screeningav genbibliotek OBS! i labhandledningen "LaboratoryDNA Science"användsplasmidenpBLU mm vi använderistället plasmidenpUC 18. e 1. E.ro" lM 101 odlasÖ~ 2. KL YVNIN G BakteriofagA'sDNA ochplasmidenpUC 18klyvs med restriktionsenzymen Hind m och BarnHl i separatarör enligt följande; 15 J.Il BakteriofagÄ DNA+ 3J.1l1OxY+tangobuffert+ 1.5 J.IlBam 81+ 1.5 J.Il Hindm + 9 J.Il vatten 8 J.lIplasmid pUC 18+ 3J1l1OxY+tangobuffert+ 1.5J.1l 'am Hl+ 1.5J1l Hindm+ 16J1l vatten Rörenintuberasi 3'PC vattenbadi 30-60minuter somhinnerkontrolleraratt klyvningenfungeratgenomatt analyseraen del av . De klyv produkternapå en agarosgel somfärgasin medEtBr. . Alla funderaröverhur resultatetbordebli på gelen. (8 ~:8 3. LIGERING 4 J.11 kluven Ä.DNA+ 4J.Llkluven pUC18 + 2 J.Llligasbuffert + 9 J.LlVatten + 1 J.Llligas 4. TRANSFORMATION E.coli 1M 101 görs kompetenta(SO\mMCaCh behövs) Förbered LB plattor med ampicillin till en slutkonc pi ca 100 Jlglml, IPTO till en slutkonc pi ca 1 mMlmI och X-gal till en slutkonc pi ca 30 Jlglml per platta (tex SOJ1lav en 2OmglmlX-gal lösning till en platta med 30 mi LB). . 1ynga: Bricka (el dyl): Papperslager (filterpapper): . LJ ---- Nytt nylonmembran: m U rspnmgsny1onmembran: .;",? Filterpapper (Whatman 3mm): . -+ -+ Kortaregenomgångav laborationeni lab-salen Lösnlo2sberednbul: De Dature rings b uffert Neutraliseringsbuffert Prehybridiseringsbuffen Hybridiseringsbuffert 6. DENATURERA. PREHYBRIDISERA(ÖD). HYBRIDISEBMON) och FRAMKALLA. Buffert! Buffert 2 Buffert 3 r.;;: TV Ä]T A MEMB RANET FRAMKALLA MED ANTI-D I G OXI GENIN ANTIKR O PP K O N JU G ERA T TILL ALKALISKTFOSFATAS + SUBSTRAT (ni tro blue tetrazollum salt och ]tpbospbate) 7.SÅTT N KULTURERAV 8. PLASMIDPREPARATIONPÅ DE PO RESTRlKTIONSENZYMKL YVNING ~ A KLONERN ~ TABLE TABLE~1. ~1. BlololY 810101Y CommonRestrlctlon Enzymes UsedInMolecullr MIc:roorpnls18 Enzyme Rec:olI'ltlonSlte Acinetobocter calcoacetlcus AccI b:Z fcnignDN4 ~~~ 5' G G TLiTLAC T~ Ae S' eA~TG CA~T6 BamHI 5' 5'GIG GIGA AT~ Te~ Bocillusamylollque{oclms H l Cut DNA with r8IIridian =-~ 811&ym8le.g.. HiIdIt 3" ((TAG (CTA Escherlchlacoli RY13 EcoRI 5' GIAAT~ eTTA 5' AGCn A G CTT 5' TT(G nCG 5' G GT T ~) ~)I C) AC Ae 5' CTTA 5'GIAAT~C HoemophilusInfluenzaeRd Hlndlll H. in/fuenzaeserotypeC.1160 Hlncll m CAC)eTG (AmerG 5' C e!! ~ GIACGT IACG'T(e G 5' e C e CIGGG ClGG6 5'C GGGlccc G G GIe ( ( provldenc1a stuartn164 Pst! Serratlo marcescens Smal Stophylococcus auteus]A Sau3A1 51G 5'IGAT~ T~ eTA CTA Xmal tIC (G cG G 5' (( - - - - G_1GGGCC Xonthomonasmalvoceol1lm The DNA to be cloned can be obtalned 5' G I !I. ' r' 9. - JO .~ ~:r '. ::J:r ,5' "-a,""'" -- by puriftcatioD of chromosomal DNA from ceDa.vtruses.or other plamlds or by selective ampl1ficatioD of DNA sequences by a technlque knoWD as polymerase chain react1on (PCR). (PCR Is explained further in Chapter 17.) 80th the vector and the foreign DNA are eleaved with restrlction enzymes (Figure 5-11). Restrlct10D enzymes recognIze a spedftc paIlndromlc sequence and make a staggered rot. wh1ch generatessticky enda.or a blUDtcut. whlch generates . ~: blUDt ends (see Table 5-1). ~~.: . sequencethat can be eleavedby many restriction Most doning vecton have ::". ~, enzymes. called the multiple clowns slte. Llgation or the rector with the DNA fragments generates a molecule ~:~ capableof repllcattngthe Insertedsequence called tecomblnant DNA (see FIgure 5-9). The total number of r~mblnant vecton obtained when elonlng all the frag..~ts that result from eleavage of chromO8Omal DNA Is t<' , ~'.' ',:(r. J61ownas agenomIe Ubrary becausethere shouldbe - ~ .:~ }c:ast one representative , , . of esch gene In the library. <i:~M ..'E. " ' ~te;natJve approach to eloning the gene for a protein cotlvert the roRNA for the protein Into DNA using a '\ 11 ~ ,, - " >~~ \. , enzymecalled reversetranscrlptase(RNA- ' ;.,~ " ndent DNA polymerase) to produce a complementary .:~P:~JcDNA). t; ~~sed " A cDNA Ubrary representa the genes that asmRNAIn a parttcularceD. 'pi~recomblnant DNA Is then transformed Into a bao~~~.ost. usualJy B. cou. and the plasmld-contalnlng . .. . e selected for antJbloUc reslstance (e,g., ampi- , , '~.' . .' . ~~ '.r: . tante).Thelibrarycan thenbescreened to Ond . oJ, elone po5Sesslng the desIred DNA . " , fragment. .~eenlng technlquescan beosedto Identlfythe ~~o~tainJng the approprtate recomblnant DNA. The multiple elonlng site used for Insertlng the foreign DNA is often part of the lacZgeneof the lIJCoperan. 1n8eI'tion of the foreign DNA into the lacZgeneinaettvatesthe gene (aeting almost like a transposon)and prevents the plasmld-d1rected synthesis of ~ctos1dase in the ~ lent cell. whteh results in whIte bactertalcolontesInstead of blue colontestf p-galactosidasewere able to eleavean ---'-.- ~U1UWUVU~ -L._-~-"--- aVI11UVIIDUW Genet1cenglneer1ng has been osed to !solate and expressthe genes for useful proteins In bacterta. yeast, Dr' even Insect cells such as 1nsul1n.Interferon. growtb hormones. and Interleu1dn. Large amountl of pure immunogen for a vacclne can be prepared without the needto wort with the Intact d1sease organisms. 45 The developmentof a vacclne agalnst hepatit1sB virus representsthe first successof recomblnant DNA vacc1nes approvedfor human use by the ns. Pood and Drug Adm1n1stration.The hepatitls B surface antigen is ~ ducedby the yeastSaccharomyces cerevfslae. In the future lt may be sufficient to Inlett plasmid DNA capable of expressIngthe deslredimmunogen (DNA vacclne)Into an tndtvldualto let the hast cellsexpressthe immunogenand generatethe immune response.RecomblnantDNA technology has also becomeessentialto laboratory dtagnosls. forenslescience.agrlculture. and many other d1sctpllnes. dIagnoses. Alberts B et al: Molecularblologyof theceU,ed 3. New York. 1994. Garlaod. Cooper GM: TheceD:a molecu1ar approoch.Washington, 1997. American Societyfor MlcroblolOl}'. Lehninger AL. Nelson DL. FaxMM: Prfnclplesof blochemlstry.ed 2. New York. 1993. Wortb. LewinB: GenesVI. Oxford. England. 1997. Oxford University. Lodlsh H et al: Molecularcell blology.ed 4. New York. 2000. WH Freeman. Stryer L: Bfochemlstry.ed 4. New York. 1995. Preeman.. VoetD, VoetJG: Bfochentfstry.ed 2, New York. .199S. Wl1ey. Watson ]D et al: MoleculJ1rbfology oj the gene,ed 4, Menlo Park. Callf. 1987, Benjamln-Cummlnp. Weigel LM et al: Genetic analyslsof a high-\evel vancomycinresistant isolateof Staphylococcusaureus, Scfmce302: l 5691571.2003. . '.;:";';.":;"i.~';' T',. l , . ", ,., " ",( ',H. 8 . I. C mRNA flGURE 5-1. A. The lactose operon Is transcrlbed IS I poIy- mRNA 1 ~ I ..... t ~~ T . , induc8r 8 . :. +. CI# D , J ndu., meraseat the operatorslte (O).C.Therepressor, comptexed with formation change in the repressor. The lat operon 15 thus transcrlbed It I low tevel. D, Eschltrlchla coU is IfOwn In I poot' . . cAN# ATP 1 I I . ~ ~ ~ .-. :.1._---. . ~~. y T ..T1i:) cAHI to the promoter rellon and bindini of the IctIYe repressor to the operator sequence, betause no Inducer Is aval!able. The result wlU be that the loc operon will not be transcnbed.ATP, adenosine trlphosphate; CAp, catlballte adenoslne rnonophosph8te. llne-aetlvltor protein; cAMP, cycUc AtP ' e medium In the presente of !actose IS the urban source. 80th the Inducer and the CAP-cAMPcomplu: are bound to the promoter, which Is fully 'turned on: and I high tevel of 1ocmRNAIs t,.,.. scrlbedandtranslated. E,Growthof E.coli in I poor medium without tlctOseresuttsIn the binding of the CAP-cAMPcompla ... CAP and the Inducer, does not recognlze the operator becauseof I can- I Rep.- M, ~ mANA I CP) and trans- 00, permelse Inducer, becluse the repressor competea with the RNA poly- Y '9 IIiIII t ~galactosldase ~ -; p . RNA (m RNA) from the promoter proteins: Icetylase W.The IDC Ilene encodes therepressorprotein. ..The Ilctose operon 15nottrlnscrlbed Intheabsente of In IltolactoM Repqnor mANA messenger Into three ~ Ilransgaloclo6ida11on ladDI8 .. T , c:Istronk -. - "tlted J Repr-..or I Ad8nyIoI. R.- E 8 New DNA Is syntheslzedsemiconservadveJy, using both strandsof the parental DNA astempiates.New DNA to correct any errors that were made. Durlng log-phue growth in rlcb medium, many Loltlatlonsof chromO8Omal syotheslsoccursat arowlng rorks and proceedsbidlrepUcattonmay occur before cell division.ThIs process rudonalJy. ODe strand (the leading strand) Is copled produces a series of nested bubbles of new daugbter contlnuousJyIn the 5' 10 3' direction. whereasthe other cbromosomea,eacb with its pair of growth forks of new strand (the lagging strand) must be synthesizedas many DNA synthesls. The polymerase moves down the DNA piecesof DNA uslng RNA primers (Okazaki'sfragments). strand, Incorporating the appropriate (complementary) The legglng.strandDNA must be extendedin the 5' 103' nucleotide at each position. ReplJcationIIIcompletewhen direction as Its template becomes available. Then the the two repUcatlon forks meet 180 degrees from the pieces are Ugated together by the eI1%)TIDe DNA ligase origtn. The processof DNA replication puts great torsional (Figure 5-2). To malntain the high degree of accuracy strain on the chromosomal circle of DNA; this strain il required for repUcation. the DNA poJymerasesposse88 reUevedby topolsomerasa (e.g.. gyrase).which super"proofreading" functions. whlch allow the enzyme 10 coil the DNA. Topolsomerases are essentiaI10the bacterla confirm that the appropriate nueleottdewas insertedand and are targets for the qulnolone antibiotk:a. . ) j ~ :' c BACTERIAL GENETICS ~ Al' ~ 0' '\J FlGURE 5-2. Batterlal DNA replkatlon. New DNA synthesis occurs at growing forks and proceeds bidirectlonally. DNA synthesis progresses in the 5' to 3' directlon contlnuosly (leading strand) or In pieces (lagglng strand). Assuming It takes 40 minutes to complete one round of repll. catlon and assumIng new Initiation every 20 minutes, initiation of DNA synthesis precedes cell division. Multiple growlng forks may be Initiated in a cell before complete septum formation and cell division. The daughter cells are -born pregnant." T~_~~!!~tlonalControi REGULATIONOF GENE EXPRESSlON 8 Bactertahavedevelopedmechanlsmsto adaptqulckly and cfficiently to changes in concentratlons oc nutrlents in thelr envlronment.The batteris turn on a completeset oc enzymeswhen necessaryand avoldmaking the enzymeor enzymesoc a pathway when the substrateIs absent. Flrst. the organization oc the genesof a blochemlcal puthwuy Into an operon, with appropriate genetic controi mechanisms. sHows coordlnated productlon of the nt..'Cessary enzymes to response to a nutrltlonal stImu- lus. Seeond.the transcriptlon of the gene Is regulated directly by repressorproteins (which bind to operators) In responseto nutrltlonal signals within the cell. ThIrd. the rate of protein synthesisby the rtbosomecan regulate transcrtptlon 10 prokaryotes. The absente of a nuclear membraneIn prokaryotesallows the ribosometo bind to the mRNA as It Is belog traoscrlbed from the DNA. TRANSCRIPTlONAL REGULATION Initiation of transcription may be under positiveor negativecontroI. Genesunder negative controi are expressed r. ;4-. ~ -~ ' ; i",':'\.';;1'::",~<':'f~/j;~'~ c~~ .'c. .. ' ~ '~ ,>: l:~ ~1 c . .c,~ . .rI":;~ ' . ' " c c ... " " " cc "' c c:c c ' -' CHAPTERJ MultipleGrowingFn 8 ...c-'c c >",- c . c . c ;'.~ c c c . c -~ .i~l'.' '", ~;0r'" ':'::"""::",,~';/':": .c\'~ . ~~ \;':'t~ .~ . c c c "'" .c""c;c ~~ ':r"~~~ "'." unlessthey are switchedoff by a repressor protein. This repressorprotein preventsgeneexpresslonby binding to a specificDNA sequencecaned.the operator, maldng lt Impossiblefor the RNA polymeraseto Initiate transcrtptlon at the promoter.Inversely.geneswhose expressionis under posidve contral are not transcr1bedunless an actlveregulator protein. canedan apoinducer, is present. The apolnducer binds to a speclfic DNA sequenceand assiststhe RNA polymerasein the In1tlatlon stepsby an unknown mechanism. Operanscan be inducible or repressible. Introductlon of a substrate (inducer) into the growth medium may induce an operon to Increasethe expressionof the enzymesnecessaryfor Its metabolism.An abundante of the end products (co-repressors) of a pathway may signal that a pathway should be shut down or repressed by reducing the synthestsof its enzymes. Thelactose(lac)operonresponsiblefor the degradation of the sugar lactoseis an Induc1bleoperonunder positive and negative regulation (~ Figure 5-1). Normally the bacteria use glucose and not tactose.In the absente of lactose the operan is repressedby the bInding of the repressorprotein to the operator sequence.thus lmped1ng the RNA polymerasefunction. In the absenteof glucose. however,the addition of lactosereversesthis repression. Full expresstonof the lac operan aIsarequ1resa proteInmediated.positive-controlmechanlsm.In B. coU.a protein calledthe catabol1tegene-activatorprotein (CAP)forms a complex with cycl1cadenosinemonophosphate(cAMP). acquiring the abil1tyto bind to a speclflcDNA sequence present In the promoter. The CAP-cAMP complex enhancesblnding of the RNA polymeraseto the promoter. thus allowing an increasein the frequency of transcrlption lnitiation. The CAP-cAMPcomplexmay Incressethe operon transcription by protein-protein interaction with the RNA potymeraseor by protein-DNAiIlteraction. The tryptophan operan (trp operon) contains the structural genes necessaryfor tryptophan blosynthes1s and is under dual transcrtptional contral mechanlsms (FIgure5-3). Although tryptophan is essentialfor protein synthesis.too much tryptophan in the cell can be toxic: thereforeits synthestsmust beregulated.At the DNA level the repressorprotein is activatedby an increasedintracellular concentratIon of tryptophan to prevent transcriptIan. At the protein synthestsleveI.rapid translation of a "test peptide" at the beglnning of the roRNA in the presence of tryptophan promotes the formation of a doublestrandedloop in the RNA. which terminatestranscription. The sameloop is formed if no protein synthesisis occurring. a situation In which tryptophan synthesis would slmllarly not be requlred. This regulates tryptophan synthesis at the roRNA level in a process termed atteDuadon. In which roRNA synthes1sis prematurely terminatecl. 37