A4-systemet 616 Talföljder på laborativt vis Pesach Laksman lärarutbildare vid Malmö högskola Biennal 2008 [email protected] Biennal 2008 [email protected] 1 2 2 2 1 Biennal 2008 [email protected] 3 2 1 Biennal 2008 [email protected] 4 Potenser 1: 2 = 2: 2 = 2 :1 2 Biennal 2008 [email protected] 5 Biennal 2008 [email protected] 6 20 Hur mycket är 2 0 Elevernas vanliga svar är 0 eller 2. Biennal 2008 [email protected] Biennal 2008 [email protected] 7 Antal vikningar 2 8 Antal delar 1 0 2 3 4 Mitt förslag kan vara 13. Biennal 2008 [email protected] Antal vikningar Biennal 2008 [email protected] 9 Antal delar Antal vikningar 10 Antal delar 1 2 1 2 2 4 2 4 3 8 3 8 4 16 4 16 17 ? Biennal 2008 [email protected] 11 Biennal 2008 [email protected] 12 Antal vikningar Antal delar 1 2 2 4 3 8 4 16 4 2 ? 3 8 5 17 32 ? ? n Biennal 2008 [email protected] Biennal 2008 [email protected] 13 Antal vikningar 2 n 14 Antal delar 0 20 1 21 2 22 3 23 17 217 n 2n n Biennal 2008 [email protected] 15 Biennal 2008 [email protected] 16 gör ovikt en gång antal vikningar 1 2 = 2 0 2 =1 −1 antal delar Biennal 2008 [email protected] 17 Biennal 2008 [email protected] 18 3 n ? 1 Biennal 2008 [email protected] Biennal 2008 [email protected] 19 3 1: 20 3 = 3: 3 = 3 :1 3 1 Biennal 2008 [email protected] 3 3 2 1 Biennal 2008 [email protected] Biennal 2008 [email protected] 21 22 4 1 23 Biennal 2008 [email protected] 24 1 Vändning av tal ½ 2 Biennal 2008 [email protected] Biennal 2008 [email protected] 25 1 2 3 4 5 1 6 7 8 9 10 6 11 12 13 14 15 16 17 18 19 20 Biennal 2008 [email protected] 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Biennal 2008 [email protected] 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Biennal 2008 [email protected] 27 3 1 29 26 28 3 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Biennal 2008 [email protected] 30 1 3 7 5 9 10 1 3 7 5 9 11 12 13 14 15 11 12 13 14 15 16 17 18 19 20 16 17 18 19 20 Biennal 2008 [email protected] 1 3 7 11 16 17 5 14 15 11 18 19 20 16 7 17 18 Biennal 2008 [email protected] 17 1 18 11 20 19 20 34 5 9 13 17 35 15 3 7 15 19 9 Biennal 2008 [email protected] 9 13 5 13 33 5 32 3 7 13 3 11 1 9 Biennal 2008 [email protected] 1 Biennal 2008 [email protected] 31 15 19 Biennal 2008 [email protected] 20 36 1 3 7 11 5 9 13 17 15 11 19 17 5 11 17 15 7 11 12 15 19 Biennal 2008 [email protected] 40 1 15 19 Biennal 2008 [email protected] 13 39 13 17 7 17 5 6 38 5 11 19 1 19 Biennal 2008 [email protected] 6 Biennal 2008 [email protected] 15 1 9 13 9 13 37 1 7 5 7 Biennal 2008 [email protected] 6 1 5 6 7 11 12 13 17 41 19 Biennal 2008 [email protected] 42 1 5 6 7 11 12 13 17 18 7 11 12 13 17 18 5 1 6 7 8 6 11 12 13 11 17 18 19 6 7 11 16 17 5 6 13 11 Biennal 2008 [email protected] 16 47 5 8 13 18 1 19 44 19 Biennal 2008 [email protected] 8 18 7 45 4 19 4 17 Biennal 2008 [email protected] 5 Biennal 2008 [email protected] 43 4 1 4 6 19 Biennal 2008 [email protected] 1 1 7 46 4 5 19 20 8 13 17 18 Biennal 2008 [email protected] 48 1 6 4 7 11 16 17 1 8 6 13 11 18 19 20 Biennal 2008 [email protected] 1 6 7 17 6 13 15 11 20 16 Biennal 2008 [email protected] 1 7 11 16 17 10 13 15 Biennal 2008 [email protected] 18 19 53 19 20 50 4 7 17 8 10 13 15 18 19 Biennal 2008 [email protected] 1 8 18 17 51 4 10 13 1 10 19 8 Biennal 2008 [email protected] 8 18 7 49 4 11 16 16 4 52 4 7 8 10 11 12 13 15 16 17 18 Biennal 2008 [email protected] 19 54 1 4 1 7 8 10 11 12 13 15 16 17 19 Biennal 2008 [email protected] 1 8 12 16 17 13 12 16 17 8 10 13 15 19 Biennal 2008 [email protected] 1 14 4 10 15 Biennal 2008 [email protected] 11 12 16 17 12 13 17 14 11 19 Biennal 2008 [email protected] 58 4 12 13 17 59 15 19 1 15 14 Biennal 2008 [email protected] 57 4 13 10 11 56 10 19 1 11 55 4 11 4 9 10 14 15 19 Biennal 2008 [email protected] 60 1 11 4 1 9 10 15 12 13 14 17 18 19 Biennal 2008 [email protected] 1 4 9 11 12 13 14 17 18 19 Biennal 2008 [email protected] 61 4 1 62 4 9 11 15 9 12 13 14 15 12 13 14 15 17 18 19 20 17 18 19 20 Biennal 2008 [email protected] 1 Biennal 2008 [email protected] 63 4 1 4 9 17 9 13 14 15 18 19 20 Biennal 2008 [email protected] 64 17 65 18 Biennal 2008 [email protected] 14 15 19 20 66 1 4 1 4 9 9 15 17 18 19 20 Biennal 2008 [email protected] 1 17 1 17 18 19 20 16 18 1 Biennal 2008 [email protected] 20 70 4 9 19 19 Biennal 2008 [email protected] 69 4 16 68 9 Biennal 2008 [email protected] 1 20 4 9 16 19 Biennal 2008 [email protected] 67 4 18 9 20 16 71 20 Biennal 2008 [email protected] 72 1 4 Vilka frågor kan man ställa till eleverna? 9 16 Biennal 2008 [email protected] Biennal 2008 [email protected] 73 • Vilket tal skulle komma näst om vi hade flera kort? Biennal 2008 [email protected] Biennal 2008 [email protected] 25, 36, … Biennal 2008 [email protected] 75 • Vilket tal skulle komma näst om vi hade flera kort? • Hur hittar vi nästa element? 77 74 1 9 4 +3 +5 76 25 16 +7 Biennal 2008 [email protected] +9 78 • Vilket tal skulle komma näst om vi hade flera kort? • Hur hittar vi nästa element? • Hur hittar vi ett element om vi vill flytta oss många steg framåt? Biennal 2008 [email protected] I II III IV V n 1 4 9 16 25 n 2 79 Biennal 2008 [email protected] 80 81 Biennal 2008 [email protected] 82 1=1 4=1+3 9=1+3+5 16=1+3+5+7 25=1+3+5+7+9 Biennal 2008 [email protected] 18 (2, 3, 6, 9, 18) 16 (2, 4, 8, 16) Varför blir just kvadrattal synliga och inga andra? Biennal 2008 [email protected] 83 Biennal 2008 [email protected] 84 1 18 2 9 3 6 1 16 2 8 4 4 Biennal 2008 [email protected] 85 Låt oss undersöka ett tal exempelvis 149. Liknande tankar kan användas då vi vill ta reda på om ett visst tal är primtal. Biennal 2008 [email protected] 86 Talet 149 ligger mellan nedanstående primtals kvadrater. 2 2 11 <149<13 Biennal 2008 [email protected] 87 Biennal 2008 [email protected] 88 Talet 149 är varken delbart med • • • • 2 3 5 7 Detta innebär att 149 är ett primtal. • eller 11 Biennal 2008 [email protected] 89 Biennal 2008 [email protected] 90 Sociala relationer… Biennal 2008 [email protected] Antal personer …inom en grupp Biennal 2008 [email protected] 91 Antal kramar 92 Antal personer Antal kramar 1 1 0 2 2 1 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 Biennal 2008 [email protected] Biennal 2008 [email protected] 93 94 Antal personer Antal kramar Antal personer Antal kramar 1 0 1 0 2 1 2 1 3 3 3 3 4 6 4 6 5 10 5 10 6 6 15 7 7 21 8 8 28 9 9 36 10 10 45 11 11 55 Biennal 2008 [email protected] 95 Biennal 2008 [email protected] 96 Hur många kramar blir det om n personer träffas? Biennal 2008 [email protected] 97 Biennal 2008 [email protected] 98 Sociala relationer mellan två grupper 0+1+2+3+4+5+….+(n – 1)= n(n −1) 2 Biennal 2008 [email protected] 99 Biennal 2008 [email protected] 100 Hur många handskakningar blir det mellan grupper på m och n personer? mn Biennal 2008 [email protected] 101 Biennal 2008 [email protected] 102 Vilka blir flest – handskakningar eller kramar? Biennal 2008 [email protected] Antal personer Antal kramar 1 0 2 1 3 3 4 6 5 10 6 15 7 21 8 28 9 36 10 45 11 55 103 Biennal 2008 [email protected] 104 Biennal 2008 [email protected] 105 Biennal 2008 [email protected] 106 Biennal 2008 [email protected] 107 Biennal 2008 [email protected] 108 Antal personer Antal kramar 1 0 2 1 3 3 4 6 5 10 6 15 7 21 8 28 9 36 10 45 11 55 Biennal 2008 [email protected] 109 Biennal 2008 [email protected] 110 Biennal 2008 [email protected] 111 Biennal 2008 [email protected] 112 Biennal 2008 [email protected] 113 114 Biennal 2008 [email protected] 115