Geometriska former. GFo Delområde GFo omfattar följande åtta diagnoser: GFo1 Grundläggande symmetri GFo2 Avbildning GFo3 Plana figurer GFo4 Kroppar GFo5 Likformighet, begrepp GFo6 Likformighet, beräkningar GFo7 Pythagoras sats GFo8 Geometriska konstruktioner Sambandet mellan de olika diagnoserna ser du i strukturschemat nedan. MGF, Förberedande mätning och geometri, utgör förkunskaper även för det här delområdet. Eftersom symmetri är en viktig grund för all geometri finns två diagnoser om symmetri och avbildning, GFo1 och GFo2. Av dessa omfattar GFo1 förkunskaper till GFo3, som i sin tur följs av GFo4 och GFo7. GFo3 omfattar i sin tur förkunskaper till GFo5 och GFo8, samtidigt som GFo5 omfattar förkunskaper till GFo6. MGF Förberedande Mätning och Geometri GFo1 Grundläggande symmetri GFo 3 Plana figurer GFo4 Kroppar GFo8 Geometriska konstruktioner GFo7 Pythagoras sats GFo2 Avbildning GFo5 Likformighet, begrepp GSk2 Förstoring och förminskning. GFo6 Likformighet, beräkningar AUp4 Kvadratrötter Didaktiska kommentarer till delområdet GFo Geometri är ett av de övergripande områdena i matematiken och behandlar rummets natur, form och storlek samt egenskaper hos geometriska figurer och kroppar. Den mer formella geometrin handlar inledningsvis om att känna igen och klassificera olika geometriska figurer och kroppar och att känna till viktiga egenskaper hos dessa. En hel del av detta utgår från begreppet symmetri som därför har en central plats i den grundläggande geometriundervisningen. Centrala begrepp inom den plana geometrin är sidor, hörn och vinklar. Motsvarande begrepp inom rymdgeometrin är sidor (sidoytor), kanter och hörn. Terminologin är dock tvetydig. En kub har t.ex. sex sidor (sidoytor) som är begränsade av kanter. Varje sådan sida är en kvadrat som i sin tur begränsas av fyra sidor (!). De sex kvadraternas sidor är alltså kanter till kuben. För att kunna följa undervisningen i geometri krävs det att eleverna behärskar ett antal viktiga begrepp. Bland dessa ingår de vanligaste geometriska figurerna och kropparna och deras egenskaper. Symmetri är ett viktigt begrepp i vår omvärld, och kommer till uttryck såväl i naturen som i den vardag människan konstruerat. Symmetri är alltså ett centralt begrepp inom geometrin och med hjälp av symmetri kan man klassificera geometriska figurer och lösa en rad geometriska problem. Som exempel har en likbent triangel en symmetrilinje och en liksidig triangel tre symmetrilinjer, vilket ger viktig information om vinklarnas inbördes storlek. På motsvarande sätt har de flesta rektanglar två symmetrilinjer som skär varandra med räta vinklar. En rektangel med fyra symmetrilinjer kallas för kvadrat. Även romben har två vinkelräta symmetrilinjer som samtidigt är diagonaler. En romb med fyra symmetrilinjer är en kvadrat. Alla symmetriska figurer kan (klippas ut och) vikas utefter symmetrilinjerna varvid de två kongruenta halvorna täcker varandra. När det gäller de plana månghörningarna, polygonerna, så är de uppbyggda av ett antal sträckor (sidor). Dessa sträckor bildar vinklar med varandra. Figurerna benämns i första hand efter antalet hörn: triangel, fyrhörning, femhörning etc. Man skiljer de olika typerna av figurer med hjälp av sidornas och vinklarnas storlek. Vissa trianglar är likbenta, andra liksidiga eller rätvinkliga. Bland fyrhörningarna kan man urskilja parallellogrammer vars motstående sidor är lika långa. Vissa av dem har räta vinklar och kallas då rektanglar, andra har lika långa sidor och kallas då romber. Om alla sidorna i en rektangel är lika långa eller om alla vinklarna i en romb är 90 grader kallas figuren för kvadrat. I polygoner med fler än tre sidor kan man dra diagonaler. I en fyrhörning kan man dra två diagonaler och i en femhörning fem diagonaler. Av de plana figurerna är cirkeln speciell. Från cirkelns periferi är det alltid lika långt till medelpunkten. Detta avstånd kallas radie och det är radien man ställer in då man ritar en cirkel med hjälp av en passare. En sträcka som är en symmetrilinje till cirkeln kallas för diameter. Diametern går genom cirkelns medelpunkt och är därför dubbelt så lång som radien. Eftersom egenskaper som symmetri, kongruens och likformighet är viktiga begrepp inom geometrin är det väsentligt att eleverna känner till figurernas namn och egenskaper. Detsamma gäller för kropparna. De tredimensionella objekten, kropparna, är lite mer komplicerade. Det är därför viktigt att eleverna får se och känna på dessa kroppar och om möjligt även bygga dem. De kommer då att upptäcka att sidoytorna (och mantelytan i en cylinder och en kon) består av plana figurer såsom rektanglar och trianglar (respektive cirkelsektorer). Det korrekta namnet för ett tredimensionellt objekt är ”kropp”. I elevdiagnosen används ofta ordet objekt eller föremål. Det är också viktigt att eleverna kan avbilda kroppar som prisman eller pyramider på ett papper på ett sådant sätt att de kan rita in en rymddiagonal respektive en höjd. I annat fall blir det svårt att bestämma längden av rymddiagonalen eller höjden. Den klassiska geometrin är uppbyggd av definitioner och satser. Det är inte nödvändigt att eleverna kan bevisa alla dessa satser, men de bör förstå satsernas innebörd och kunna tillämpa satserna vid problemlösning. En bra metod att lära sig de mest intressanta satserna inom den plana geometrin, är att utföra motsvarande konstruktioner med passare och linjal. Detta gäller inte minst förmågan att dela en sträcka, konsturea mittpunktsnormalen till en sträcka, bisektrisen till en vinkel eller att konstruera den cirkel som omskriver en triangel.