Experiment Swedish (Sweden) Q1-1 Elektrisk ledningsförmåga i två dimensioner (10 poäng) Läs de allmänna anvisningarna i separat kuvert, innan du påbörjar detta problem. Inledning I jakten på att utveckla nästa generations apparater baserade på halvledarteknologi, såsom datorchips eller solceller, letar forskarna efter material som uppvisar extrema transportegenskaper, såsom låg ledningsförmåga. Mätning av dessa egenskaper utförs på prov av ändlig storlek och speciell geometri, med kontakter med ändlig kontaktresistans. Dessa effekter måste tas hänsyn till för att man ska få korrekta värden på materialegenskaperna. Dessutom kan en tunn ο¬lm av ett material uppföra sig annorlunda än samma material i bulkform. I denna uppgift ska vi undersöka mätningen av elektriska egenskaper. Vi kommer att använda två olika deο¬nitioner: • Resistans π : Resistansen är en egenskap hos ett speciο¬kt prov eller en speciο¬k komponent. Det är denna storhet vi verkligen mäter hos ett speciο¬kt prov med givna dimensioner. • Resistivitet π: Resistiviteten är den materialegenskap som bestämmer resistansen. Den beror på själva materialet, och på externa parametrar som temperaturen, men inte på ett provs geometri. Speciellt kommer vi att mäta den så kallade ytresistiviteten. Denna ges av den vanliga resistiviteten dividerad med tjockleken hos det mycket tunna skiktet. Vi kommer att utforska inverkan av följande parametrar på mätningen av den elektriska resistansen hos tunna skikt av ett material. • hur mätkretsen är kopplad, • mätningens geometri, • och provets dimensioner. Som prov kommer ett ark ledande papper och en metallbelagd kiselskiva att användas. Q1-2 Experiment Swedish (Sweden) Utrustningslista (1) (2) (4) (3) (5) Figur 1: Ytterligare utrustning för detta experiment. 1. Graο¬t-täckt ledande papper 2. Kiselskiva belagd med ett tunt kromskikt (i hållare) 3. Plexiglasskiva med 8 fjäderbelastade spetsar 4. En ohmsk resistor 5. Färgade klistermärken Försiktighetsåtgärder • Den tillhandahållna kiselskivan går lätt sönder om man tappar eller böjer den. Undvik att röra eller repa den blanka metallytan. Instruktioner • I experimentet används en signalgenerator som likspänningskälla. I detta läge ger signalgeneratorn en konstant spänning mellan kontakterna märkta VOLTAGE (5) och GND (7). Siffrorna refererar till fotot som visas i de allmänna anvisningarna. • Spänningen (skala: 0−5 V) kan justeras med den vänstra potentiometern, märkt adjust voltage (3) med skruvmejseln. • När du gör denna uppgift, måste du se till att den modul i signalgeneratorn som är till för att driva högtalaren, är avstängd med vippströmbrytaren (8). Detta kan kontrolleras genom att mäta spänningen mellan kontakterna märkta speaker amplitude (6) och GND (7). Om högtalar-drivmodulen är avstängd är denna spänning noll. Experiment Swedish (Sweden) Q1-3 Del B. Mätningar med fyrpunktsprob (4PP) (1.1 poäng) För att mäta resistiviteten hos ett prov med hög precision, måste de kontakter som används för spänningsmätningar och de som används för strömtillförsel hållas väl åtskilda. Denna teknik kallas fyrpunktsprob (4PP). De fyra kontakterna är ordnade i en symmetrisk geometri som är väldigt enkel: strömmen πΌ ο¬yter in i provet genom en av de yttre kontakterna (kallad inο¬ödet), sedan via alla tänkbara vägar genom provet, och ut genom den andra kontakten (utο¬ödet). Under tiden mäts spänningen π över en viss sträcka π i provet. Allting blir väldigt enkelt om vi har en symmetrisk konο¬guration, dvs. samma avstånd π mellan alla kontakter och kontakterna i mitten av provet, som visat i följande skiss: R kontakt Batteri + _ s I V s s Prov R kontakt Kurvan πΌ som funktion av π kallas provets πΌ − π karaktäristika och möjliggör bestämning av provsegmentets resistans. Du ska nu enbart använda 4PP-tekniken. Börja med att använda en rak och ekvidistant placering av fyra av de åtta spetsarna enligt fotot. Figure 2: Plexiglasskiva för 4PP-mätningar, med sina fyra gummifötter och åtta kontakter (eller spetsar). För följande mätning ska hela det ledande pappersarket användas. Q1-4 Experiment Swedish (Sweden) Viktiga instruktioner för alla följande mätningar: • Pappersarkets långsida är referenssida. De fyra spetsarna ska arrangeras parallellt med denna sida. • Var noga med att använda skiktsidan (svart), inte den bruna baksidan av pappret! Du kan märka ut den korrekta orienteringen med färgade klistermärken. • Kontrollera att det inte ο¬nns några hål eller rispor i pappret. • För dessa mätningar ska kontakterna placeras så nära provets mittpunkt som möjligt. • Tryck tillräckligt hårt på skivan för att alla spetsar ska få god kontakt. Plastfötterna ska nätt och jämnt nudda ytan. A.1 Mätning med fyrpunktsprob (4PP): Mät spänningsfallet π över ett segment av längd π som funktion av strömmen πΌ som passerar genom detta segment. Registrera totalt minst fyra värden, gör en tabell och plotta spänningsfallet π som funktion av strömmen πΌ in Graf A.1. 0.6pt A.2 Bestäm den effektiva elektriska resistansen π = 0.2pt A.3 Använd Graf A.1 för att bestämma osäkerheten Δπ i värdet på resistansen π för 4PP-mätningen. π πΌ som du ο¬ck från Graf A.1. 0.4pt Experiment Swedish (Sweden) Q1-5 Del B. Ytresistivitet (0,3 poäng) Resistiviten π representerar en materialegenskap, som bestämmer resistansen hos en tredimensionell ledare av givna dimensioner och given form kan beräknas. Här betraktar vi en stång med dimensionerna längd π, bredd π€, och tjocklek π‘: t l I w ρ Den elektriska resistansen π hos den övre, tjocka ledaren ges av: π = π 3D = π ⋅ π π€⋅π‘ (1) På samma vis kan vi deο¬niera resistansen hos en tvådimensionell ledare av tjocklek π‘ βͺ π€ och π‘ βͺ π l w t ρβ π = π 2D = πβ‘ ⋅ π , π€ (2) genom att använda ytresistiviteten πβ‘ ≡ π/π‘ (kallad rho-box). Denna har enheten Ohm: [πβ‘ ] = Ω. Viktigt: Ekv. 2 gäller bara för homogen strömtäthet och konstant potential över ledarens hela tvärsnittsplan. För fallet punktformig kontakt mot ytan gäller inte detta. I stället kan man för detta fall visa att sambandet mellan ytresistivitet och resistans lyder πβ‘ = π ⋅π ln(2) (3) för π, π€ β« π‘. B.1 Beräkna papprets ytresistivitet πβ‘ från 4PP-mätningen i del A. Vi ska kalla detta speciella värde för π∞ (och den uppmätta resistansen från del A π ∞ ) eftersom provets dimensioner är mycket större än avståndet mellan kontakterna π : π, π€ β« π . 0.3pt Experiment Swedish (Sweden) Q1-6 Del C. Mätningar för olika prov-dimensioner (3,2 poäng) Fram till nu har vi inte tagit hänsyn till de ändliga provdimensionerna π€ och π. Om provet blir mindre leder det mindre ström, om spänningen hålls konstant: om vi lägger på en spänning mellan de två punktkontakterna (vita cirklar) kommer ström att ο¬yta längs alla möjliga banor genom provet som inte korsar varandra, som symboliserat av linjerna: ju längre linjer, desto mindre ström, indikerat av linjernas tjocklek. För ett litet prov (b) och samma pålagda spänning kommer strömmen att minska för att det ο¬nns färre möjliga strömvägar. Resistansen kommer därvid att öka: (a) (b) (Yt-)resistiviteten är densamma oberoende av provets storlek. För att räkna om den uppmätta resistansen till en ytresistivitet enligt ekv. 3, behöver vi alltså införa en korrektionsfaktor π(π€/π ): πβ‘ = π π (π€/π ) ⋅ . ln(2) π(π€/π ) (4) För ett prov av längd π β« π beror faktorn π bara på kvoten π€/π och är större än 1: π(π€/π ) ≥ 1. För enkelhets skull fokuserar vi på beroendet på bredden π€ och ser bara till att provet är tillräckligt långt för våra mätngar. Vi antar att värdet närmar sig det korrekta gränsvärdet πβ‘ för stora dimensioner: π (π€/π ) = π ∞ ⋅ π(π€/π ) med (5) π(π€/π → ∞) → 1.0. C.1 Använd 4PP-metoden för att mäta resistansen π (π€, π ) för fyra värden på π€/π i området 0,3 till 5,0 och notera dina resultat i Tabell C.1. Försäkra dig om att provets längd är större än fem gånger spets-avståndet: π > 5π och att provets längd alltid tas längs samma (lång-)sida av pappret. Mät för varje värde på π€/π spänningen för fyra olika värden på strömmen, och beräkna resistansens medelvärde π (π€/π ) över fyra mätningarna. För in dina resultat i Tabell C.1. 3.0pt C.2 Beräknaπ(π€/π ) för var och en av dessa mätningar. 0.2pt Del D. Geometrisk korrektionsfaktor: skalningslag (1.9 points) Vi har sett i del C att den uppmätta resistiviteten skalar med kvoten mellan bredden och avståndet mellan spetsarna, π€/π . Utgående från dina data i del C väljer vi följande funktionsansats för att beskriva resultaten inom mätintervallet: Funktionsansats: π€ π π(π€/π ) = 1.0 + π ⋅ ( ) π (6) Experiment Swedish (Sweden) Q1-7 Notera att π(π€/π ) blir 1.0 för väldigt stora värden på π€/π , D.1 Anpassa en kurva med hjälp av Ekv. 6 och värdena på π(π€/π ) från del C, genom att välja det lämpligaste grafpappret (antingen linjärt Graf D.1a, lin-log Graf D.1b, eller log-log Graf D1.c) och plotta värdena. 1.0pt D.2 Bestäm parametrarna π och π från din anpassning. 0.9pt Q1-8 Experiment Swedish (Sweden) Del E. Kiselskivan och van der Pauws metod (3,4 poäng) I halvledarindustrin är kännedom om ytresistansen för halvledare och tunna metallskikt mycket betydelsefull, eftersom denna bestämmer komponenters egenskaper. Du ska nu arbeta med en kiselskiva. Halvledarskivan är belagd med ett mycket tunt kromskikt (blanka sidan). Öppna kiselskivans behållare (skruva i RELEASE-pilens riktning) och ta fram skivan. Lägg den på bordet med den blanka sidan upp. Se noga till att inte tappa eller knäcka skivan, och inte heller ta på eller repa den blanka ytan. E.1 Använda samma 4PP-uppställning som förut för att mäta spänningen π som funktion av strömstyrkan πΌ. Skriv ned skivans nummer på svarsbladet; du ο¬nner det på skivans plastbehållare. 0.4pt E.2 Plotta dina mätvärden i Graf E.2 och bestäm resistansen π 4PP . 0.4pt E.3 För att kunna bestämma korrektionen för ett cirkulärt prov, approximerar vi provets effektiva bredd π€ med skivans diameter π· = 100 mm. Beräkna med detta antagande kvoten π€/π . Använd funktionsansatsen i Ekv. 6 och dina parametrar π och π för att bestämma korrektionsfaktorn π(π€/π ) för mätningarna på skivan. 0.2pt E.4 Beräkna ytresistiviteten πβ‘ hos kromskiktet med hjälp av Ekv. 4. 0.1pt För att mäta ytresistiviteten precist utan att behöva använda geometriska korrektioner, föreslog Philipsingenjören L. J. van der Pauw en enkel mätmetod: genom att på ett prov av godtycklig form placera de fyra spetsarna (numrerade 1 till 4) längs periferin, så som visas i ο¬guren. Strömmen ο¬yter genom två närliggande spetsar, t.ex. 1 och 2, och spänningen mäts mellan spetsarna 3 och 4. Detta ger ett resistansvärde π πΌ,π = π 21,34 . I21 + Batteri _ 1 2 Prov 3 4 V34 Av symmetriskäl gäller π 21,34 = π 34,21 och π 14,23 = π 23,14 . Van der Pauw visade att för en godtycklig, en- Experiment Swedish (Sweden) Q1-9 kelt sammanhängande (inga hål), form på provet, och för spetsiga kontakter, så gäller följande ekvation: (7) π−ππ 21,34 /πβ‘ + π−ππ 14,23 /πβ‘ ≡ 1. Figur 3: 4PP-anordningen ovanpå den metallbelagda kiselskivan. Notera den raka avfasningen på den cirkulära skivans högra sida. Anslut de fyra fjädrande spetsarna så att de bildar en kvadrat. Anslut två närliggande spetsar till strömkällan via ampèremetern, och anslut de två återstående spetskontakterna till voltmetern. Orientera kvadraten så att en sida är parallell med skivans avfasning. E.5 Skissa strömο¬ödet mellan kontakterna från strömkällan i förhållande till skivans avfasning. Mät spänningen π för minst 6 olika värden på strömmen πΌ, någorlunda jämnt utspridda. Redovisa dina värden i Tabell E.5. 0.6pt E.6 Upprepa proceduren efter att ha vridit anordningen 90 grader. Redovisa dina värden i Tabell E.6. 0.6pt E.7 Plotta alla värden tillsammans i en graf, Graf E.7, med olika färger och/eller symboler för respektive mätserie. Bestäm medelvärdet β¨π β© med hjälp av de två kurvorna. 0.5pt E.8 Lös ut πβ‘ ur Ekv. 7, genom att ersätta alla resistanser π ππ,ππ med β¨π β©, och beräkna sedan värdet på kromskiktets ytresistivitet πβ‘ . 0.4pt E.9 Jämför resultaten från mätningarna gjorda med rak geometri (E.4) med dem gjorda med van der Pauws metod (E.8). Ange den procentuella avvikelsen mellan resultaten av de två mätningarna. 0.1pt E.10 Kromskiktet anges vara 8 nm tjockt. Använd detta värde tillsammans med det slutliga resultatet från van der Pauws metod, för att beräkna resistiviteten hos krom (Cr) medelst Ekv. 1 och 2. 0.1pt