Syfte: Vi ska se vilka olika ämnen, i fast form och i löst form, som kan leda ström. Vi ska alltså
mäta olika ämnens konduktivitet/ledningsförmåga.
Material:
Pappformar
Sked
2 stycken 100 ml bägare
Konduktivitetsmätare
Våg
Rörsocker (Sackaros/C12H22O11
Druvsocker (Glukos/C6H7O(OH)5)
Kaliumpermanganat (KMnO4)
Järnoxid (Hematit/Fe2O3)
Koksalt (Natriumklorid/NaCl)
Utförande:
Mät upp 2g av varje ämne i en pappformer och fyll en bägare med avjoniserat vatten och en bägare
med joniserat vatten (kranvatten). Testa att mäta ämnenas konduktivitet utan att ha dem upplösta
och lös sedan upp vardera ämnen i det avjoniserade vattnet och blanda det med en sked. Mät hur
deras konduktivitet var när dem var lösta var för sig genom att blanda, mät, hälla ut, fylla på med
avjoniseratvatten, blanda i nästa ämne och börja om. Till sist, när du testat alla ämnens
konduktivitet, prova att bara att mäta det joniserade och avjoniserade vattnets ledningsförmåga.
Anteckna alla resultat.
Längst upp till höger:
Hematit upplöst i
avjoniserat vatten.
Från vänter till
höger: Koksalt,
glukos och
kaliumpermanganat.
Resultat:
Leder ämnena eller inte?
Ämne:
I fast form
I avjoniserat vatten
Sackaros
Nej
Nej
Glukos
Nej
Nej
Hematit
Nej
Nej
Kaliumpermanganat
Nej
Ja
Koksalt
Nej
Ja
Joniserat vatten
Ja
Avjoniserat vatten
Nej
Slutsats:
Kaliumpermanganat, koksalt och joniserat vatten gav de alla positivt resultat. Alla andra ämnen gav
ett negativt resultat. Slutsatsen som man kan dra av detta resultat är:
Alla ämnen med lösa joner har en elektrisk ledande förmåga. De lösa jonerna är elektriskt laddade
och leder alltså elektricitet! Kaliumpermanganat och koksalt är alltså salter som hålls ihop av
(relativt svaga) jonbindningar. När de kommer i kontakt med vatten släpper jonbindningarna och
delarna av salterna binder sig till det polära vattnet. Det är därför ingen av salterna reagerade i fast
form: för att de var elektrisk neutrala vid det tillfället! Man kan alltså tänka sig att det fungerar
såhär:
1. Saltet Natriumklorid består av Na+ och av Cl-.
Natriumjonen kallar vi för en katjon och kloridet kallar
vi för en anjon. Tillsammans bildar de ett neutralt salt.
Med summa laddningen 0.
Ingvald Straume
2. Vatten har en svag polär laddning.
Syrets del är svagt negativt laddat och
vätets är svagt de motsatta.
Vattenmolekylernas olika delar attraheras
alltså till saltets olika joner och löser upp
dem. På så sätt skapar vattnet en laddning
och blir elektriskt laddad.
Vatten är alltså också laddat (väldigt svagt laddat fast inte på samma sätt) och det har antagligen att
göra med att dess molekyl struktur inte är linjär (vinkeln mellan varje väteatom i förhållande till
syreatomen är 104,5°). Vattnets syre är också mer elektronegativ än väte (man kan finna
elektronegativa ämnen på det periodiskasysmtemet genom att kolla så långt upp och till höger så
möjligt). Syret drar därför lättare till sig molekylens elektroner och där av blir syrets del mer
negativ: En negativ och två positiva poler uppstår och därmed uppstår en polär kovalentbindning.
En kovalentbindning är när t.ex. två atomer bildar en molekyl och ”samsas” om elektronerna. På så
sätt får atomerna ett ädelt yttre skal samtidigt som elektronerna kretsar runt dem alla. Bindningarna
mellan joner, jonbindningar, fungerar inte på samma sätt men det återkommer jag till.
En parallell som jag också tycker är värd att dra är att metaller också leder elektricitet bra och att
dess valenselektroner inte heller är ”normala” om man jämför med en jon. Man kan alltså tänka sig
att så fort något inte stämmer med valenselektronerna så får ämnena en elektrisk ledande förmåga.
När det gäller salter så har det fått sina udda valenselektroner genom att lämnat ifrån sig en/flera
elektroner till en annan, för övrigt några andra, atomer som behöver dem. Om vi tar koksalt som ett
exempel så lämnar natrium (atomnummer 11) ifrån sig en elektron för att uppnå en ädel struktur och
sedan tar en kloratom (atomnummer 17) upp en elektron och då också blir till ädelt. Dessa två
atomer måste finnas i närheten för att det ska uppstå en sådan stor ”lust” att de ska bilda joner.
Dessa två nybildade joner attraheras p.g.a. att de blir laddade av att ge eller att få elektroner. Dem är
ju skapta för att vara neutrala. Detta leder till att jonerna klumpar ihop sig och för att dela
laddningen som uppstått så jämt som det går bildar jonerna kristaller och därav blir salter. Salter är
alltså kristaller som bildads av atomer som blivit till joner i syftet av att fylla sitt skal. Här kan man
också dra en parallell: Dem bildar kristaller för att finna en balans, för att inte vara laddade. Naturen
strävar efter denna balans och har visat det i alla möjliga situationer: Värme sprider sig för att
minska kontrasten i omgivningens temperatur. Vakuum suger åt sig luft för att jämna ut trycket i
omgivningen. Allting handlar om utjämning!
Resultaten kaliumpermanganat och natriumklorid innehåller både metaller och vardera ickemetaller
och är både salter. Natrium (i koksaltet) är en metall och kalium (i kaliumpermanganat) är också en
metall och resterna i dess molekyler består av en ickemetall eller en molekyl som innehåller en eller
flera ickemetaller. Salter innehåller alltså minst 1 metall och 1 ickemetall som både är laddade till
motsatsen av varandra och därför skapar en kristallartad struktur. Salter har alltså en oxiderande och
en reducerande del. Som en liten parantes vill jag säga att både metallerna natrium och kalium är
klassade som alkalimetaller och med tanke på att både salterna löser sig enkelt i vatten kan man tro
att alkalisalterna löser upp sig enklare. Det är nog därför att alkalimetallerna ligger i grupp 1: Desto
större laddningar desto starkare jonbindning och desto svårare blir det att till exempel lösa upp
salterna eller smälta dem. Jonbindningarna hålls ihop därför att jonernas laddning helt enkelt
attraheras av varandra. Jonbindningarna är därför väldigt starka och innehåller väldigt mycket
energi. Denna energi, hydratiseringsenergi, frigörs när saltet hydratiseras, löses upp, i t.ex. ett
lösningsmedel som vatten.
Felkällor:
Vi använde oss av konduktivetsmätaren som baserades på en glödlampa. Det är mycket enklare att
misstolka resultat från detta instrument eftersom att den t.ex. skulle kunna glöda jättelite utan att
viskulle märka det. Det avjoniserade vattnet kanske inte heller var helt avjoniserat vilket skulle leda
till att visa ämnen skulle visa sig ha en egenskap om den egentligen inte besitter.