B A KG R U N D S D O K U M E N TAT I O N Sjukhusförvärvad pneumoni – bakgrundsdokumentation Artiklar publicerade under rubriken Bakgrundsdokumentation är författarens enskilda manuskript. Budskapet i dessa delas därför inte alltid av expertgruppen i sin helhet. Sjukhusförvärvade pneumonier – allmän bakgrund Håkan Hanberger Förebyggande av sjukhusförvärvade pneumonier Christina Agvald-Öhman Klinisk diagnostik vid misstänkt sjukhusförvärvad pneumoni Mats Kalin Sjukhusförvärvade pneumonier – mikrobiologisk diagnostik Christian G. Giske Sjukhusförvärvade pneumonier – behandling/handläggning Jonas Hedlund Pneumonier hos immunsupprimerade patienter på sjukhus Karlis Pauksens Vårdrelaterad pneumoni – pediatriska aspekter Margareta Eriksson, Jonas Berner, Sten Erik Bergström Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • 31 B A KG R U N D S D O K U M E N TAT I O N Sjukhusförvärvade pneumonier – allmän bakgrund Håkan Hanberger Sammanfattning Detta dokument ger en bakgrund till behandlingsrekommendationen som har tillkommit på initiativ av Svenska Läkaresällskapets Referensgrupp för Antibiotika och Läkemedelsverket. Vårdrelaterad pneumoni är en allvarlig komplikation för patienter som vårdas på sjukhus med eller utan assisterad andning. Det drabbar även patienter som vårdas utanför sjukhus (på sjukhem eller i hemsjukvård), vilka dock inte omfattas av denna behandlingsrekommendation. Behandlingsrekommendationen inkluderar olika aspekter av sjukhusförvärvad pneumoni hos vuxna, barn och immunsupprimerade, men inte vårdrelaterad pneumoni på sjukhem eller i hemsjukvård. Inledning Det har tidigare inte funnits några svenska nationella riktlinjer för hur man ska handlägga vårdrelaterad pneumoni, men det finns publicerade amerikanska (1) och europeiska (2) riktlinjer, och nya internationella riktlinjer är under framtagande (Torres et al., under publicering) vilka ingår i bakgrundsdokumentationen till behandlingsrekommendationen. Syftet med behandlingsrekommendationen är att ge råd och rekommendationer om den mest effektiva handläggningen av sjukhusförvärvad och ventilatorassocierad lunginflammation på svenska sjukhus. Målgruppen för dokumentet är alla läkare som deltar i vården av patienter med sjukhusförvärvad och ventilatorassocierad lunginflammation, det vill säga intensivvårdsläkare, infektionsläkare, lungläkare, barnläkare, internmedicinare, kirurger, akutläkare, hematologer, onkologer, samt sjuksköterskor, fysioterapeuter, mikrobiologer, radiologer och även vårdadministratörer och beslutsfattare. Definitioner Följande indelning och definitioner används i detta bakgrundsdokument och i behandlingsrekommendationen: • Sjukhusförvärvad pneumoni (HAP, hospital-acquired pneumonia) definieras som en pneumoni som debuterar ≥ 48 timmar efter sjukhusinläggning. • Ventilatorassocierad pneumoni (VAP, ventilatorassociated pneumonia) är en undergrupp av sjukhusförvärvad pneumoni och definieras som en pneumoni som uppkommer ≥ 48 timmar efter intubation/trakeostomi och start av invasiv ventilation. 3 32 • • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 Etiologi Vanliga orsaker till sjukhusförvärvad pneumoni är: • Gramnegativa bakterier: Enterobacteriaceae, Haemophilus influenzae och non-fermentativa gramnegativa bakterier som Pseudomonas aeruginosa och Acinetobacter baumannii. • Grampositiva kocker: Staphylococcus aureus, streptokocker och pneumokocker. Det är vanligt med flera agens samtidigt och etiologin påverkas av tidigare antibiotikabehandling, eventuell immunsuppression, annan sjukdom och vårdtid på sjukhus före insjuknande. Virus och svamp är ovanliga orsaker till sjukhusförvärvad pneumoni hos immunkompetenta vuxna individer. Tabell I visar bakteriella agens från nedre luftvägssekret på intensivvårdsavdelning i två svenska studier. ”Punktprevalensstudier överskattar incidensen av vårdrelaterade infektioner” Epidemiologi Sedan 2008 genomför Sveriges Kommuner och Landsting (SKL), tillsammans med landets alla landsting, regelbundna så kallade punktprevalensmätningar av förekomsten av vårdrelaterade infektioner (VRI), vilka inkluderar pneumonier med debut ≥ 48 timmar efter inskrivningen på sjukhus (Figur 1) (5). Den totala frekvensen VRI bland alla sjukhusvårdade patienter har i punktprevalensstudien legat mellan 9 och 11 % och prevalensen vårdrelaterade pneumonier har varit cirka 1,5 % (Figur 1). Dessa punktprevalensstudier (där alla patienter registreras under en dag) överskattar dock den verkliga incidensen av VRI eftersom patienter som drabbas av VRI har en längre vårdtid. I en stor nationell journalgranskningsstudie som genomfördes av SKL under 2013 och första halvåret 2014 vid 63 sjukhus (6), var incidensen av vårdrelaterad pneumoni drygt 0,5 %, det vill säga cirka en tredjedel av de 1,5 % som uppmätts i prevalensstudierna. Trots punktprevalensstudiernas överskattning av antalet patienter som faktiskt drabbas av VRI används uppgifterna från prevalensstudierna som underlag för motåtgärder och i öppna jämförelser mellan olika vårdgivare. Det föreligger därför ett behov av nya longitudinella studier som mäter den faktiska incidensen av vårdrelaterade pneumonier. B A KG R U N D S D O K U M E N TAT I O N Tabell I. Bakteriella agens detekterade i nedre luftvägssekret hos intuberade patienter vid intensivvårdsavdelningarna på Karolinska Universitetssjukhuset, Solna (3) respektive Skånes Universitetssjukhus, Malmö (4). Solna 2002–2010 Lunginfiltrat ej inklusionskriterium (n = 346) Antal (%) Malmö 2004–2007 Lunginfiltrat inklusionskriterium (n = 65) Antal (%) Staphylococcus aureus 95 (27) 8 (12) Haemophilus influenzae 59 (17) 12 (18) Escherichia coli 58 (17) 9 (14) Klebsiella species 49 (14) 4 (6,2) Streptococcus pneumoniae 41 (12) 1 (1,5) Enterobacter species 31 (9,0) 4 (6,2) Pseudomonas aeruginosa 30 (8,7) 13 (20) Stenotrophomonas maltophilia 17 (4,9) 1 (1,5) Serratia species 16 (4,6) 2 (3,1) Citrobacter species 10 (2,9) 3 (4,6) Acinetobacter species 9 (2,6) 0 Proteus species 6 (1,7) 3 (4,6) Beta-hemolyserande streptokocker 6 (1,7) 1 (1,5) Morganella species 2 (0,6) 3 (4,6) Bakteriella agens Figur 1. Vårdrelaterade infektioner 2008 –2014 i somatisk vård: SKL PPM-VRI-mätningar, Sverige, punktprevalensmätning. 2,5 % 2,0 % 1,5 % 1,0 % 0,5 % 0,0 % VT 08 VT 09 VT 10 VT 11 VT 12 VT 13 HT 13 VT 14 Pneu Lunginflammation Cyst Blåskatarr HMI Hud, mjukdelar GE Smittsamma tarmsjukdomar Sep Blodförgiftning Feb Feber Pye Njurbäckeninfektion I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 33 B A KG R U N D S D O K U M E N TAT I O N B A KG R U N D S D O K U M E N TAT I O N Figur 2. Antal fall av VAP per 10 000 ventilatortimmar enligt Svenska Intensivvårdsregistret (7). 6 Antal VAP 4 2 0 2008 2009 2010 2011 2012 2013 2014 Detta är en modifierad rapport. Svenska Intensivvårdsregistret 2015-05-06. Den nationella journalgranskningsstudie som SKL genomförde under 2013 och första halvåret 2014, och som nämns ovan, omfattande 29 860 vårdtillfällen (6). Antalet vårdtillfällen där patienten fick minst en VRI var 1 492, vilket motsvarar 5,0 % av de granskade vårdtillfällena. Av dessa VRI var 11,5 % (n = 72) vårdrelaterade pneumonier och 1,9 % (n = 28) VAP. När det gäller pneumonier på intensivvårdsavdelningar (VAP) finns statistik från Svenska Intensivvårdsregistret (SIR), dit 77 av 84 intensivvårdsavdelningar är anslutna och levererar data. Bland patienter med respiratorbehandling ≥ 48 timmar vid svenska intensivvårdsavdelningar har risken att utveckla VAP varit 0,5–0,7 % mellan 2012 och 2014. Figur 2 visar antal VAP per 10 000 ventilatortimmar 2008–2014. tion. Hos intuberade patienter bryter själva tuben en barriär i skyddet mot kolonisation och infektion. Vid tidig VAP tros huvudorsaken vara mikroaspiration förbi kuffen, alternativt aspiration före eller i samband med intubation. Vid sen VAP tros huvudorsaken vara direktkontamination via tuben, till exempel vid omvårdnad. En annan tänkbar orsak är atelektaser, som genom sekretstagnation bidrar till ökad risk för pneumoni. Referenser 1. 2. 3. Patogenes På sjukhus är det vanligt att patienter koloniseras av sjukdomsframkallande bakterier i de övre luftvägarna. Sjukhusförvärvad pneumoni orsakas av aspiration av dessa mikroorganismer (8). Aspiration kan ske innan patienten kommer till sjukhus, om patienten till exempel varit medvetslös på grund av trauma, förgiftning, stroke eller annan sjukdom. Dessutom är det vanligt med mikroaspirationer som sker nattetid även hos helt friska individer. Bakteriemängd, bakteriernas virulens, mukociliär funktion, lungfunktion och immunologisk status lokalt och systemiskt avgör om aspirationen utöver kolonisation ger upphov till infektion. Suboptimal ventilationsdistribution över tid samt för låg och för liten tidalvolym är faktorer som påverkar mukociliär funk- 34 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 4. 5. 6. 7. 8. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416. Torres A, Ewig S, Lode H, et al. European HAPwg. Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med. 2009;35:9–29. Hyllienmark P, Martling CR, Struwe J, et al. Pathogens in the lower respiratory tract of intensive care unit patients: impact of duration of hospital care and mechanical ventilation. Scand J Infect Dis. 2012;44:444–52. Ahl J, Tham J, Walder M, et al. Bacterial aetiology in ventilator-associated pneumonia at a Swedish university hospital. Scand J Infect Dis. 2010;42:469–74. Sveriges Kommuner och Landsting. Punktprevalensmätning av vårdrelaterade infektioner, våren 2014 2015 [citerad 2015-05-03]. http:// skl.se/halsasjukvard/patientsakerhet/matningavskadorivarden/matningavvriochbhk/resultatvardrelateradeinfektioner.2333.html. Sveriges Kommuner och Landsting. Skador i vården - skadeområden och undvikbarhet - markörbaserad journalgranskning januari 2013 juni 2014 [citerad 2015-05-03]. http://webbutik.skl.se/sv/artiklar/ skador-i-varden-skadeomraden-och-undvikbarhet-markorbaseradjournalgranskning-januari-2013-juni-2014-.html Intensivvårdsregister S. 2015 [citerad 2015-06-14]. www.sir.se. Johanson WG, Pierce AK, Sanford JP. Changing pharyngeal bacterial flora of hospitalized patients. Emergence of gram-negative bacilli. N Engl J Med. 1969;281:1137–40. B A KG R U N D S D O K U M E N TAT I O N Förebyggande av sjukhusförvärvade pneumonier Christina Agvald-Öhman Sammanfattning När det gäller att förebygga sjukhusförvärvade pneumonier (HAP, hospital-acquired pneumonia) finns relativt begränsat med material, men betydligt mer när det gäller ventilatorassocierad pneumoni (VAP), en undergrupp av HAP. Generella riktlinjer för förebyggande av infektioner fokuserar mycket på basala hygienrutiner men även en del på lokaler, utrustning och rutiner för rengöring av utrustning. Länkar till dessa riktlinjer finns i referens 1–7. I detta bakgrundsdokument tas olika preventiva åtgärder upp samt evidensläget för dessa. Såväl övergripande som specifika åtgärder beskrivs för HAP och VAP. De preventionsåtgärder som befunnits ha tillräcklig evidens för rekommendation enligt expertgruppen tas med i behandlingsrekommendationen. Vidare diskuteras kring riskgrupper av patienter och att tidigt identifiera dessa samt fysioterapeutens roll i att förebygga infektioner. Den pågående diskussionen om betydelsen av rökstopp innan operation samt pre- och postoperativ information lyfts också fram. Dokumentet är indelat i två avdelningar – en för HAP och en för VAP. Inledning När det gäller att förebygga sjukhusförvärvade pneumonier (HAP, hospital-acquired pneumonia) finns ganska lite material, men betydligt mer när det gäller ventilatorassocierad pneumoni (VAP), en undergrupp av HAP. Generella riktlinjer för förebyggande av infektioner fokuserar mycket på basala hygienrutiner och även en del på lokaler, utrustning och rutiner för rengöring av utrustning. På senare tid har även ett stort medialt fokus riktats mot undermålig städning av sjukhus och vårdutrymmen. Länkar till nationella och internationella webbsidor som rör övergripande riktlinjer och handlingsplaner för att förebygga sjukhusförvärvade pneumonier finns i referens 1–7. Där finns bland annat ”Guidelines for Preventing Health-Care-Associated Pneumonia, 2003” från Office for Disease Prevention and Health Promotion, USA (7) och ”Att förebygga infektioner – ett kunskapsunderlag” från Socialstyrelsen 2006 (4). Avgränsning Motverkande av spridning av antibiotikaresistenta bakterier och hotet av ökande antibiotikaresistens, som en del i förebyggande arbete, behandlas inte i detta bakgrundsdokument eller i behandlingsrekommendationen. Sjukhusförvärvad pneumoni (HAP) Rökstopp innan operation. 2013 beslutade de opererande specialiteterna i Sverige att införa rökstopp innan operation. Många landsting kräver idag rökstopp innan operation och många patienter erbjuds rökavvänjning. Debatten kring rökstopp har bland annat förts i Läkartidningen och i Svenska Dagbladet samt av Svenska Läkaresällskapet. Sammanfattningsvis kan sägas att det finns viss evidens för att rökstopp minskar postoperativa komplikationer, men att det även finns etiska aspekter som bör beaktas. Preoperativ information till patienten om vikten av tidig mobilisering ges numera av de flesta opererande kliniker och många goda exempel finns på att detta minskar postoperativa komplikationer, till exempel ER AS (enhanced recovery after surgery) som har visats förkorta vårdtiden både vid esofagus- och kolonkirurgi och därigenom eventuellt också förebyggt pneumonier. Flera artiklar har publicerats kring detta, bland annat i Läkartidningen. Adekvat andningsvård pre- och postoperativt ingår som en naturlig del i de vårdprogram som de flesta kirurgiska specialiteter har. De fokuserar mycket på fysioterapeutens viktiga roll; daglig fysioterapi/mobilisering med individuellt anpassad andningsgymnastik är en omistlig del i att förebygga postoperativa pneumonier och är klinisk praxis även om evidens i strikt bemärkelse saknas. En viktig del i detta är också mobilisering till stol och gång så snart som möjligt, numera så tidigt som fyra timmar även efter stor kirurgi (ER AS). ”Generella riktlinjer för förebyggande av infektioner fokuserar på basala hygienrutiner” Riskgrupper. Definition av särskilda riskgrupper och tidigt insatta åtgärder när dessa identifierats är en viktig del i att förebygga pneumonier hos icke-opererade patienter. Exempel på sådana patientgrupper är patienter med cystisk fibros (CF) där specialutbildade läkare, fysioterapeuter och sjuksköterskor är helt avgörande för långtidsöverlevnaden. Dessa patienter sköts vid särskilda CF-centra och behandlingen är mycket tidskrävande för patienterna. En annan betydligt större grupp är de patienter som drabbas av neurologiska sjukdomar som till exempel stroke, ALS och myastenia gravis. Där är daglig andningsgymnastik plus inhalationer, eventuellt med CoughAssist (en apparat som växlar mellan negativt och positivt tryck och anbringas I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • 35 B A KG R U N D S D O K U M E N TAT I O N via ansiktsmask), en viktig del i den förebyggande behandlingen. Att den enskilda patienten har kunskap om sin sjukdom är också väsentligt och ökar motivationen och följsamheten till riktlinjerna. Det är också viktigt att värdera aspirationsrisken hos dessa patienter genom en foniatrisk undersökning (FUS). I många fall leder undersökningen till att patienten får en tidig PEG (perkutan endoskopisk gastrostomi) och inte kan inta något per os på grund av diagnostiserad aspiration. ”Att patienten har kunskap om sin sjukdom är väsentligt” Ventilatorassocierad pneumoni (VAP) Riskgrupper för VAP är framför allt patienter med traumatisk hjärnskada, neurologiskt sjuka och immunsupprimerade patienter. Men alla patienter i respirator är i riskzonen och risken ökar ju längre tid respiratorbehandlingen fortgår. Övergripande åtgärder • Följsamhet till basala hygienrutiner är en hörnsten i det förebyggande arbetet och kan inte nog understrykas (8). • Sederingsprotokoll vid respiratorbehandling visar en minskning av VAP, men det finns ingen klar samlad evidens (9). • Protokoll för urträning ur respirator minskar VAP, genom att minska tiden som patienten är i riskzonen (10). • Bemanningen runt patienten (så kallad nurse to patientratio) är en oberoende riskfaktor för VAP (11). • Utbildning och återkommande feedback om avdelningens resultat till all dess personal är en viktig ingrediens för att hålla medvetenheten och följsamheten till rutiner hög bland all personal. Specifika åtgärder Vaken patient, eller så lätt sederad som möjligt, medför kortare ventilatortider och är en av de absolut effektivaste åtgärderna, eftersom risken för VAP ökar för varje dag patienten ligger i respirator. NIV (non-invasive ventilation) för att undvika intubation och invasiv ventilation, när så är möjligt, till exempel för patienter med kronisk obstruktiv lungsjukdom (KOL). Fukt- och värmeväxlare istället för värmd och fuktad luft är klinisk praxis för att minska VAP-incidensen, men evidensen för detta är oklar. Åtgärdspaket mot VAP (så kallade VAP-bundles) används på många ställen och har ett visst vetenskapligt stöd (12,13). Det består av en rad åtgärder som tillsammans har en adderande effekt och kan till exempel utgöras av: • Dagligt wake up-test om patienten är sövd (undantag neurokirurgiska patienter). 36 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • • Höjd huvudända för att minska risken för mikroaspiration. Subglottisaspiration varannan timme, som framför allt är effektivt för att minska så kallad tidig VAP (14). • Trombosprofylax. • Ulcusprofylax. Munvård på IVA-patienter. Vilken munvårdslösning som används, hur den utförs, och hur ofta har i flera studier visat sig påverka incidensen av VAP. Aktiv andningsvård och daglig fysioterapi utförd av fysioterapeut är också en viktig del i den förebyggande behandlingen, där bland annat ”baggning” eller CoughAssist i kombination med slemlösande inhalationer ingår för att hjälpa patienten att mobilisera och få upp sekret. Aktiv befuktning är obligat för stentbehandlade patienter (som har ett eller flera stent i trakea/stambronker) och används även rutinmässigt på barn. På vuxna patienter är evidensen för att detta skulle minska incidensen av VAP oklar. Tidig trakeotomi. Tanken att en trakeotomerad patient kräver mindre eller ingen sedering och att en vaken patient skulle ha lättare att medverka vid andningsgymnastik känns logisk. Dessutom borde det ge kortare tid i ventilator och incidensen av VAP borde därmed minska. Det finns många studier med delvis motstridiga resultat, men två nyligen utkomna metaanalyser talar inte för någon signifikant minskning av VAP (15,16). ”Alla patienter i respirator är i riskzonen och risken ökar ju längre tid behandlingen fortgår” Selective digestive decontamination (SDD). Att ge bredspektrumantibiotika plus antimykotika lokalt i munhålan och/ eller i mag-tarmkanalen är behandlingstradition framför allt i Holland. Det finns en mängd studier från de senaste 10–15 åren som visar en minskad VAP-incidens och även studier som visar att den lokala resistensen inte påverkas. Dessa studier kommer främst från Holland som har ett bra resistensläge i paritet med eller bättre än Sverige. Trots detta har oron för resistensutveckling ändå gjort att ingen rekommendation att praktisera detta stöds i litteraturen. Tidig antibiotikaprofylax till patienter med skalltrauma med hög risk för tidig VAP (på grund av aspiration) har visats ge kortare tid i ventilator och på IVA, men det var ingen skillnad i mortalitet eller tid på sjukhus. Statiner har på grund av sina anti-inflammatoriska egenskaper gett upphov till hypoteser om att de skulle kunna minska VAP, men de studier som hittills gjorts har inte kunnat bekräfta detta. Jejunostomi istället för ventrikelsond har inte visats ge minskad VAP-incidens. B A KG R U N D S D O K U M E N TAT I O N Dagliga klorhexidinbad har i flera studier visats sänka VAP (och CVKRI, central venkateter-relaterad infektion), men en oro för ökande klorhexidinresistens finns (17). Silverbelagda trakealtuber och kontinuerlig kufftryckskontroll. De studier som gjorts har inte kunnat visa övertygande evidens för att detta skulle vara effektivt (18–20). Probiotika. Hypotesen har varit att probiotika skulle motverka kolonisation av patogener i mag-tarmkanalen. De studier som finns är inte konklusiva och större studier med VAP som primär endpoint behövs. Enteral nutrition (EN). Det finns viss evidens för att EN kan öka förekomsten av tidig VAP, men fördelarna med tidig EN bedöms vara större än nackdelarna. Dessutom kan subglottisaspiration varannan timme och höjd huvudända när så är möjligt motverka risken för mikroaspiration. De-escalation therapy. Att smalna av antibiotika efter odlingssvar och korta behandlingstiden för att undvika kolonisation av multiresistenta bakterier är allmänt accepterat, och flera studier har visat att det inte ger någon ökad relaps av VAP (21). Evidensläget avseende prevention av sjukhusförvärvad pneumoni finns väl beskrivet i flera översiktsartiklar. I de fall ovan som saknar en direkt referens hänvisas till dessa översiktsartiklar (22–24). 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Referenser 1. 2. 3. 4. 5. 6. 7. Tablan OC, Anderson LJ, Besser, et al. Guidelines for preventing health-care associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recommendations and reports : Morbidity and mortality weekly report Recommendations and reports / Centers for Disease Control. 2004;53(Rr-3):1–36. Eunetips. Towards a European network to promote infection prevention for patient safety.www.uk-essen.de/eunetips/index.php Vårdhandboken: hygien, infektioner och smittspridning. www.vardhandboken.se/Kategori/Hygien,_infektioner_och_smittspridning Socialstyrelsen. Att förebygga vårdrelaterade infektioner – Ett kunskapsunderlag. 2006. www.folkhalsomyndigheten.se/publicerat-material/publikationer/Att-forebygga-vardrelaterade-infektioner--Ett-kunskapsunderlag/ World Health Organization. Patient Safety. www.who.int/topics/patient_safety/en/ World Health Organization. Clean Care is Safer Care. www.who.int/ gpsc/en/ Office of disease prevention and health promotion. National Action Plan to Prevent Health Care-Associated Infections: Road Map to Elimination. www.health.gov/hcq/prevent_hai.asp 19. 20. 21. 22. 23. 24. Pittet D, Hugonnet S, Harbarth S, et al. Effectiveness of a hospitalwide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet. 2000;356:1307–12. Aitken LM, Bucknall T, Kent B, et al. Protocol-directed sedation versus non-protocol-directed sedation to reduce duration of mechanical ventilation in mechanically ventilated intensive care patients. Cochrane Database Syst Rev. 2015;1:CD009771. Blackwood B, Burns KE, Cardwell CR, et al. Protocolized versus non-protocolized weaning for reducing the duration of mechanical ventilation in critically ill adult patients. Cochrane Database Syst Rev. 2014;11:CD006904. Hugonnet S, Uckay I, Pittet D. Staffing level: a determinant of lateonset ventilator-associated pneumonia. Crit Care. 2007;11:R80. Sulis CA, Walkey AJ, Abadi Y, et al. Outcomes of a ventilator-associated pneumonia bundle on rates of ventilator-associated pneumonia and other health care-associated infections in a long-term acute care hospital setting. Am J Infect Control. 2014;42(5):536–8. Eom JS, Lee MS, Chun HK, et al. The impact of a ventilator bundle on preventing ventilator-associated pneumonia: a multicenter study. Am J Infect Control. 2014;42:34–7. Damas P, Frippiat F, Ancion A, et al. Prevention of ventilator-associated pneumonia and ventilator-associated conditions: a randomized controlled trial with subglottic secretion suctioning. Crit Care Med. 2015;43:22–30. Meng L, Wang C, Li J, et al. Early vs late tracheostomy in critically ill patients: a systematic review and meta-analysis. Clin Respir J. 2015 Mar 12. doi: 10.1111/crj.12286. [Epub ahead of print]. Andriolo BN, Andriolo RB, Saconato H, et al. Early versus late tracheostomy for critically ill patients. Cochrane Database Syst Rev. 2015;1:CD007271. Chen W, Cao Q, Li S, et al. Impact of daily bathing with chlorhexidine gluconate on ventilator associated pneumonia in intensive care units: a meta-analysis. J Thorac Dis. 2015;7:746–53. Li X, Yuan Q, Wang L, et al. Silver-coated endotracheal tube versus non-coated endotracheal tube for preventing ventilator-associated pneumonia among adults: a systematic review of randomized controlled trials. J Evid Based Med. 2012;5:25–30. Lorente L, Lecuona M, Jimenez A, et al. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care. 2014;18:R77. Rouze A, Jaillette E, Nseir S. Continuous control of tracheal cuff pressure: an effective measure to prevent ventilator-associated pneumonia? Crit Care. 2014;18:512. Singh N, Rogers P, Atwood CW, et al. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162:505–11. Landelle C, Marimuthu K, Harbarth S. Infection control measures to decrease the burden of antimicrobial resistance in the critical care setting. Curr Opin Crit Care. 2014;20:499–506. Nair GB, Niederman MS. Year in review 2013: Critical Care-respiratory infections. Crit Care. 2014;18:572. Nair GB, Niederman MS. Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med. 2015;41:34–48. Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • 37 B A KG R U N D S D O K U M E N TAT I O N Klinisk diagnostik vid misstänkt sjukhusförvärvad pneumoni Mats Kalin Sammanfattning Diagnosen pneumoni är omöjlig att ställa invändningsfritt hos sjukhusvårdade patienter, inte minst hos respiratorvårdade. Lunginfiltrat kan orsakas av många olika processer. Okritisk användning av röntgenkriterier kan å ena sidan medföra betydande överbehandling med antibiotika, men utan en aktiv klinisk och mikrobiologisk diagnostik och beredskap för snabb behandling är å andra sidan risken för förlorade liv stor. Den kliniska diagnostiken vid sjukhusförvärvad pneumoni (hospital-acquired pneumonia, HAP) blir ofta osäker på grund av att en hög andel patienter är gamla och svaga och därför insjuknar med diffusa symtom. I typiska fall har patienten nytillkommen feber, luftvägssymtom och andningspåverkan samt förhöjda inflammationsparametrar och nytillkomna röntgeninfiltrat. I många fall är emellertid bilden svårtolkad och man kan helt enkelt inte fastställa om patienten har pneumoni eller inte. Hos en intuberad patient kan situationen underlättas av att man har möjligheter att få representativa odlingsprover via trakealodling och fiberbronkoskopi. Utmaningen vid både HAP och VAP (ventilatorassocierad pneumoni) blir att identifiera de patienter som är så svårt sjuka i kombinationen av grundsjukdom och akut försämring att avvaktande observans utan antibiotika medför risk för ett fatalt förlopp. I dessa fall måste tillräckligt bred antibiotikabehandling inledas snarast efter adekvat mikrobiologisk diagnostik. Om diagnosen är osäker och det förefaller rimligt att avvakta ett dygn kan dock nya kliniska och laboratoriemässiga data därefter underlätta fortsatt bedömning. För adekvat klinisk diagnostik är kontinuerlig uppföljning och bedömning av patientens sjukdomsstatus nödvändigt. Om patienten är kliniskt stabiliserad efter ett till tre dygn och övriga parametrar talar mot en pneumoni, bör antibiotika sättas ut. Inledning Diagnosen pneumoni är omöjlig att ställa invändningsfritt. Det är troligen oftast en successiv övergång från aspiration av en mindre mängd bakterier, som elimineras av immunförsvaret utan signifikanta kliniska symtom, till kliniskt uppenbar och ibland svår eller livshotande infektion. För samhällsförvärvad pneumoni (community acquired pneumonia, CAP) är nytillkomna eller ökande lunginfiltrat ett accepterat kriterium vid sidan om en klinisk presentation förenlig med pneumoni. När det gäller pneumoni som drabbar människor som sjukhusvårdas (HAP) kan man utgå ifrån att aspiration av små mängder bakterier är mycket vanligare än hos dem 38 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 som inte befinner sig på sjukhus, eftersom det alltid rör sig om mer eller mindre svårt sjuka människor med olika predisponerande faktorer (1–3). Detta gäller förstås alldeles särskilt patienter på intensivvårdsavdelningar (IVA) och speciellt dem som vårdas i respirator och riskerar att ådra sig ventilatorassocierad pneumoni (VAP). Patienter på sjukhus blir oftare koloniserade med gramnegativa bakterier, särskilt svårare sjuka, rökare och undernärda, samt de som fått behandling med antibiotika och preparat som höjer magsäckens pH-värde; 35–75 % kan vara koloniserade efter tre till fem dagars vårdtid (1). Denna kolonisation medför en ökad risk för infektion. ”Kontinuerlig uppföljning och bedömning av patientens sjukdomsstatus är nödvändig” Liberal användning av kriterier riskerar ge allvarlig överdiagnostik Vid HAP är inte nya lunginfiltrat ett lika enkelt, användbart kriterium som vid CAP, eftersom lunginfiltrat kan orsakas av många olika processer hos sjukhusvårdade patienter, mest påtagligt för dem som vårdas i respirator (1–7). Detta innebär att det inte finns något säkert sätt att fastställa när HAP eller VAP föreligger, vilket är bekymmersamt eftersom prognosen är allvarlig (4,8). Med okritisk användning av röntgenkriterium kan man å ena sidan få en överdiagnostik på 50 %, vilket kan medföra att dubbelt så många patienter får antibiotika jämfört med vad som verkligen är indicerat. Å andra sidan är risken för förlorade liv stor utan en aktiv och kritisk klinisk och mikrobiologisk diagnostik och beredskap för snabb behandling. ”Lunginfiltrat kan orsakas av många olika processer” Problemets storlek och allvarlighetsgrad HAP drabbar 1–20 av 1 000 intagna patienter (2,6). Risken för HAP beror förstås på vilka underliggande faktorer som föreligger och är naturligtvis väsensskild för en svårt sjuk IVA-patient i respirator jämfört med en frisk person som ligger inne några dagar för exempelvis gastroenterit. Förutom IVA-patienter är det framför allt äldre och immunsupprimerade patienter som drabbas av HAP och dessutom patienter med svårare trauma (3,4,6). B A KG R U N D S D O K U M E N TAT I O N VAP är den vanligaste IVA-associerade infektionen med en incidens på 9,7 % i en metaanalys som inkluderade fler än 48 000 respiratorvårdade patienter (9). Man kan också uttrycka frekvensen VAP på IVA som 2–16 episoder på 1 000 respiratordagar (3,10). Rapporterade siffror är dock mycket varierande, främst beroende på skillnader i diagnostisk teknik, framför allt odlingsteknik och kriterier för positiv odling (4,11). Dessutom medför pågående antibiotikabehandling, något som är vanligt hos sjukhusvårdade och speciellt intensivvårdade patienter, en dramatiskt försämrad känslighet vid odling (12). Mortaliteten vid VAP är betydande och rapporteras ofta till 20–50 % eller ännu högre i något äldre studier i fall där inte adekvat behandling getts (4,13). I en nyligen publicerad analys där man sökt eliminera felkällor så långt som möjligt, fann man att dödligheten som orsakats direkt av pneumoniepisoden (attributable mortality) var cirka 6 % (8), men med avancerad statistik fann man i en annan studie att attributable mortality var mycket olikartad för olika patientgrupper och att den var beroende av tid på sjukhus, diagnos och sjukdomens svårighet (14). Utöver det faktum att de patienter som drabbas av HAP/ VAP har underliggande, ofta allvarliga sjukdomstillstånd, är förekomsten av mer svårbehandlade bakterier som orsak till infektionen, inte minst av bakterier med hög förekomst av antibiotikaresistens, en avgörande orsak till allvarlig prognos (3). Snabbt insatt behandling är viktig eftersom en inadekvat initial antibiotikaterapi är klart negativ för prognosen (15). ”Utvärdering av kriterier är svårt – det finns ingen golden standard för diagnosen HAP” Viktigt med klinisk diagnostik HAP drabbar alltså framför allt äldre, mer eller mindre multisjuka patienter, som ofta vårdats längre tid på sjukhus. Den rent kliniska diagnostiken är ofta inte mer komplicerad än för CAP, även om det är högre andel patienter som är riktigt svaga och insjuknar med diffusa symtom. I typiska fall har patienten nytillkomna symtom med feber och luftvägssymtom och röntgenundersökning visar nytillkomna infiltrat förenliga med diagnosen pneumoni. I många fall är emellertid bilden svårtolkad och man kan helt enkelt inte fastställa om patienten har pneumoni eller inte. När man genomför studier och utvärderingar är det förstås nödvändigt med entydiga kriterier, men för praktiskt kliniskt arbete är de av mindre värde (2,4,16). Kriterier som används är cirkulatorisk påverkan, feber > 38,3 °C (eller < 35 °C), påverkad andningsfunktion med hypoxi, syresättningssvårigheter eller förhöjd andningsfrekvens, produktion av sputum med särskild signifikans för förekomst av purulent sputum, LPK > 10 000, stigande CRP, procalcitonin (PCT) > 0,25–0,5 samt nytillkomna lunginfiltrat på röntgen (1,2,4). Utvärdering av kriterier är svårt eftersom det inte finns någon golden standard för diagnosen (1). Etiologiska studier när det gäller icke-intuberade patienter med HAP är också svåra att genomföra eftersom bakteriemi är ovanligt och de flesta patienter är oförmögna att producera användbara sputumprover. Det finns heller inga data som stöder användbarhet av nasofarynxodling. Lungpunktion med finnål har genomförts i enstaka studier för etiologisk diagno-stik vid HAP/VAP och är antagligen en användbar metod (17). Bedömning av lunginfiltrat är svårare vid misstänkt HAP/VAP än vid CAP (4). Vid CAP kan det finnas tidigare röntgenförändringar eller förekomst av kronisk lungsjukdom och då kan bedömningen vara svår. Differentialdiagnostik mot lungemboli och immunologiskt betingade infiltrat kan också vara svår. Oftast är dock bilden vid misstänkt CAP rätt entydig. Vid sjukhusförvärvad infektion och speciellt vid VAP, beror uppåt hälften av lunginfiltraten på andra saker än pneumoni (7), såsom lungblödning, lungemboli, hjärtsvikt, läkemedelsbiverkningar, immunologiska reaktioner, ARDS (acute respiratory distress syndrome) eller övervätskning. Radiologiskt kan det vara mycket svårt att skilja mellan dessa orsaker till nytillkomna infiltrat. ”Hos en intuberad patient tas odlingsprover via trakealodling och helst via fiberbronkoskopi” Ventilatorassocierad pneumoni – en betydande utmaning Merparten av patienterna som insjuknar i pneumoni när de vistas på sjukhus har VAP (2,6). Kriterier som används för diagnostik av VAP är väsentligen desamma som för HAP, men hos en intuberad patient har man dessutom möjligheter att få representativa odlingsprover via trakealodling och framför allt via fiberbronkoskopi. Pugin och medarbetare lanserade 1991 Clinical Pulmonary Infection Score (CPIS) (18), en algoritm för att ställa diagnosen VAP, men utvärderingar har inte gett stöd för dess användbarhet (1,4,19). Eftersom dödligheten i VAP inte är obetydlig har man dessutom kunnat jämföra resultat erhållna med klinisk och laboratoriemässig diagnostik med post mortem-patologi (20–22). Resultaten från sådana jämförelser är dock spretiga och svårtolkade och man kan inte säga att vi har tillgång till någon golden standard för diagnosen VAP (1). Man kan därför inte fastställa sensitivitet och specificitet för använda kriterier och diagnostiska metoder. Till och med när det gäller odlingsmetoder är uppskattad känslighet och specificitet i olika studier påtagligt varierande (20,23). Center for Disease Control and Prevention i USA har nyligen presenterat försök till ett nytt synsätt på utveckling och uppkomst av VAP för att få en mer kliniskt orienterad diagnostik (1,2,16). Man försöker där ta hänsyn till att utveckling av VAP är en successiv process och man har vid sidan om VAP infört begrepp som ventilator associated condition (VAC), infection related VAC och dessutom ventilator associated tracheobronchitis (VAT). Huruvida detta koncept verkligen erbjuder någon förbättring är omdebatterat och förefaller enligt en holländsk utvärdering tveksamt (24). I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 39 B A KG R U N D S D O K U M E N TAT I O N B A KG R U N D S D O K U M E N TAT I O N Praktisk klinisk handläggning Utmaningen vid både HAP och VAP blir att identifiera de patienter som är så svårt sjuka i kombinationen av grundsjukdom och akut försämring, vilken skulle kunna bero på pneumoni, att avvaktande observans i stället för antibiotikabehandling bedöms medföra risk för patientens död eller en allvarlig försämring (2,4). I dessa fall måste en tillräckligt bred antibiotikabehandling snarast inledas efter adekvat mikrobiologisk diagnostik (se bakgrundsdokument Sjukhusförvärvade pneumonier – behandling/handläggning). Att genomföra denna efter inledd antibiotikabehandling medför en sänkt känslighet (2,12). Det kan vara svårt att genomföra provtagning via bronkoskop direkt vid en försämring, särskilt på mindre enheter där man vårdar patienter i respirator. Det är därför viktigt att känna till att kvantitativ trakealodling, med iakttagande av adekvata kriterier för signifikant växt, medför nästan likstor precision som odling via bronkoskop (7). Med anledning av detta är det inte acceptabelt att starta antibiotikabehandling av en intuberad patient utan att dessförinnan ta åtminstone blod- och trakealodlingar. ”God kontakt med det mikrobiologiska laboratoriet är nödvändigt” Om diagnosen är osäker och det förefaller rimligt att avvakta utan antibiotikabehandling i ett dygn, kan man under detta dygn få in nya data som kan underlätta fortsatt bedömning. Viktigast är förstås klinisk förändring. Om patienten stabiliseras är fortsatt expektans troligen adekvat. Vid tilltagande cirkulatorisk eller respiratorisk påverkan, vilken kan bli uppenbar snart nog efter den första bedömningen, måste däremot en ny total bedömning av patientens situation göras (4). Efter ett dygn kan man också ha nytta av utvecklingen av LPK, CRP och PCT, även om ingen av dessa tre markörer erbjuder någon helt tillförlitlig bas för tolkning (3). Tydliga trender, särskilt av flera markörer, kan dock vara av värde. Efter ett dygn kan man också ha preliminära resultat av blod-, sputum- och trakealodlingar och framför allt odlingar av material erhållet med hjälp av provtagning med skyddad borste (PSB) och bronkoalveolärt lavage (BAL) via bronkoskop. En god kontakt med det mikrobiologiska laboratoriet är nödvändig. För adekvat klinisk diagnostik är en kontinuerlig uppföljning och bedömning av patientens sjukdomsstatus nödvändig (1,2). Ibland bedöms patientens akuta tillstånd ha varit så allvarligt att man inte sett det som korrekt att avvakta med antibiotika, men trots detta stabiliseras situationen snabbt och någon annan orsak till den kliniska försämringen kan identifieras. Om patienten är kliniskt stabiliserad efter ett till tre dygn och övriga parametrar talar mot akut pneumoni, 40 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 bör antibiotika sättas ut. Klinisk förbättring inom kortare tid än ett dygn beror sällan på effekt av antibiotika. Om klinik och övriga parametrar till övervägande del talar för pneumoni, även om odlingar utfaller negativt, kan behandlingen inte sättas ut utan vidare eftersom känsligheten med odlingar inte är hundraprocentig, inte ens när patienten kunnat provtas innan antibiotika getts. Negativa odlingar talar förstås starkt mot bakteriell pneumoni, men måste vägas in i en total bedömning av patientens situation. Minst daglig bedömning är önskvärt i samråd mellan involverade intensivvårdsläkare, kirurger, traumatolog, onkolog, infektionskonsulter och så vidare. Direkt undersökning av patienten tillsammans med sjuksköterskor och undersköterskor är av värde, inte minst i oklara fall då man ibland finner andra orsaker till den akuta försämring som gett upphov till misstanke om pneumoni. Fungerande teamwork är alltså avgörande för att kunna genomföra en adekvat handläggning av den enskilde patienten och samtidigt bidra till en klok användning av antibiotika. Referenser 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. Nair GB, Niederman MS. Nosocomial Pneumonia, Lessons Learned. Crit Care Clin. 2013;29:521–46. Ottosen J, Evans H. Pneumoni. Challenges in the Definition, Diagnosis, and Management of Disease. Surg Clin N Am. 2014;94:1305–17. Barbier F, Andremont A, Wolff M, et al. Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opin Pulm Med. 2013,19:216–28. Bassetti M, Taramasso L, Giacobbe DR, et al. Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti Infect Ther. 2012;10:585–96. Torres A, Carlet J. Ventilator-associated pneumonia. European Task Force on ventilator-associated pneumonia. Eur Respir J. 2001;17:1034–45. American Thoracic Society–Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416. Torres A, Ewig S, Lode H, et al. and European HAP working group. Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med. 2009;35:9–29. Timsit JF, Zahar JR, Chevret S. Attributable mortality of ventilator-associated pneumonia. Current Opinion in Critical Care. 2011;17:464–71. Safdar N, Dezfulian C, Collard HR, et al. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med. 2005;33:2184–93. Rosenthal VD, Bijie H, Maki DG. International Nosocomial Infection Control Consortium (INICC) Report, data summary of 36 countries, for 2004–2009. Am J Infect Control. 2012;40:396–407. Conway Morris A, Kefala K, Wilkinson TS, et al. Evaluation of the effect of diagnostic methodology on the reported incidence of ventilator-associated pneumonia. Thorax. 2009;64:516–22. Timsit JF. Bronchoalveolar lavage for VAP diagnosis: patients must be sampled before any change of antimicrobial therapy. Intensive Care Med. 2007;33:1690–3. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165:867–903. Nguile-Makao M, Zahar JR, Français A, et al. Attributable mortality of ventilator associated pneumonia: respective impact of main characteristics at ICU admission and VAP onset using conditional logistic regression and multi-state models. Intensive Care Med. 2010;36:781–9. Agrafiotis M, Siempos II, Ntaidou TK, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis. Int J Tuberc Lung Dis. 2011;15:1154–63. Magill SS, Klompas M, Balk R, et al. Developing a new, national approach to surveillance for ventilator-associated events. Crit Care Med. 2013;41:2467–75. B A KG R U N D S D O K U M E N TAT I O N 17. Hernes SS1, Hagen E, Tofteland S, et al. Transthoracic fine-needle aspiration in the aetiological diagnosis of community-acquired pneumonia. Clin Microbiol Infect. 2010;16:909–11. 18. Pugin J, Auckenthaler R, Mili N, et al. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991;143:1121–9. 19. Zilberberg MD, Shorr AF. Ventilatorassociated pneumonia: the Clinical Pulmonary Infection Score as a surrogate for diagnostics and outcome. Clin Infect Dis. 2010;51(Suppl. 1):S131–S135. 20. Tejerina E, Esteban A, Fernández-Segoviano P, et al. Accuracy of clinical definitions of ventilator-associated pneumonia: comparison with autopsy findings. J Crit Care. 2010;25:62–8. 21. Fàbregas N, Ewig S, Torres A, et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax. 1999;54:867–73. 22. Torres A, el-Ebiary M, Padró L, et al. Validation of different techniques for the diagnosis of ventilator-associated pneumonia. Comparison with immediate postmortem pulmonary biopsy. Am J Respir Crit Care Med. 1994;149:324–31. 23. Rea-Neto A, Youssef NC, Tuche F, et al. Diagnosis of ventilator-associated pneumonia: a systematic review of the literature. Critical Care. 2008;12:R56. 24. Klein Klouwenberg PM, van Mourik MS, Ong DS, et al. MARS Consortium. Electronic implementation of a novel surveillance paradigm for ventilator-associated events. Feasibility and validation. Am J Respir Crit Care Med. 2014;189:947–55. Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 41 B A KG R U N D S D O K U M E N TAT I O N Sjukhusförvärvade pneumonier – mikrobiologisk diagnostik Christian G. Giske Sammanfattning Mikrobiologisk diagnostik av sjukhusförvärvad pneumoni omfattar i huvudsak kvantitativa bakterieodlingar från nedre luftvägar. Bronkoskopiska prover som skyddad borste, BAL (bronkoalveolärt lavage) inklusive lågvolyms-BAL och trakealsekret är de mest användbara proverna för diagnostik. Med gällande kvantitativa signifikansgränser uppnås en bra balans mellan sensitivitet och specificitet. En Cochrane-översikt har visat att kvantitativa odlingar inte påverkar mortaliteten vid ventilatorassocierad pneumoni (VAP) och inte heller leder till kortare tid på intensivvårdsavdelning (IVA) eller snabbare modifiering av antibiotikabehandling hos de som får kvantitativa odlingar utförda. Trots detta anses kvantitativa odlingar vara det enda verktyg man har för att skilja mellan kolonisation och infektion. Studierna som ingår i översiktsartikeln är få, med lågt antal patienter och låg mortalitet, då flertalet patienter fick korrekt initial behandling. Med gällande kunskapsläge är kvantitativa luftvägsodlingar den bästa diagnostiska strategin trots brist på evidens på gynnsam effekt på mortalitet. Några svenska studier har kartlagt etiologin vid svenska sjukhusförvärvade pneumonier, framför allt vid VAP. Vanliga agens är H. influenzae, S. aureus, E. coli och P. aeruginosa och det etiologiska panoramat påverkas av vårdtidens längd och tid med mekanisk ventilation. Svenska nationella resistensdata saknas för luftvägsodlingar, då resistensövervakning i huvudsak är inriktad på infektioner i blodbanan. I detta bakgrundsdokument redovisas siffror från Karolinska Universitetslaboratoriet som visar måttlig förekomst av resistens bland de viktiga patogenerna. I nuläget har virologisk och molekylärbiologisk diagnostik ingen klar plats i diagnostiken, bortsett från diagnostik av influensa och atypiska bakterier som inte framkommer i odlingar. PCR-baserade metoder för bakterier som kan påvisas i vanliga luftvägsodlingar har heller ingen dokumenterad plats i nuläget. Metod En systematisk litteratursökning genomfördes av en informationsspecialist på Läkemedelsverket i samarbete med författaren. Litteratursökningarna gjordes i databaserna PubMed, Embase och Web of Science. Totalt framkom 136 referenser från PubMed, 36 från Embase och 39 från Web of Science. Samtliga abstracts gicks igenom av författaren och relevanta artiklar studerades sedan i sin helhet och inkluderades i sammanställningen. Den fullständiga sökstrategin är tillgänglig genom Läkemedelsverkets informationsspecialist. 42 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 Diagnostiska metoder Hos sjukhuspatienter, speciellt intensivvårdspatienter, är de centrala delarna av nedre luftvägarna ofta koloniserade med potentiella luftvägspatogener utan att de orsakar infektion (1). Detta försvårar tolkningen av odlingsresultaten. ”Kvantitativa luftvägsodlingar är i nuläget den bästa diagnostiska strategin” Skyddad borste Vid pneumoni är infektionen lokaliserad till de perifera luftvägarna. Provtagning med skyddad borste (PBS, protected brush specimen) via flexibelt bronkoskop möjliggör provtagning från perifera bronker med minimerad risk för kontamination från mer proximala delar av luftvägarna. Provtagningen beräknas ge ett utbyte på 0,001–0,01 ml sekret. Katetern klipps av och borsten skickas till det mikrobiologiska laboratoriet i 1 ml buljong (1). Provtagningsförfarandet medför en utspädning av provtagningsmaterialet med en faktor 100–1 000 och fynd av 103 cfu (colony forming unit)/ml motsvarar en bakteriekoncentration på 105 –106 cfu/ml i provtagen bronk (2). Tekniken har utvärderats i ett stort antal studier och även om det inte finns någon golden standard att jämföra med, råder enighet om att fynd av ≥ 103 cfu/ml ska betraktas som signifikant (2–5). I en metaanalys inkluderande 18 studier av intensivvårdspatienter fann man en sensitivitet och specificitet avseende bakteriell pneumoni på 85 respektive 94 % (6). Samma provtagningsteknik kan också användas utan hjälp av bronkoskop, så kallad blind skyddad borste. Detta blir då en mindre riktad provtagning från mer centrala delar av bronkträdet, men resultaten är ändå tillfredsställande med nästan lika hög sensitivitet och specificitet som med bronkoskopisk provtagning (7). ”Vid pneumoni är infektionen lokaliserad till de perifera luftvägarna” Bronkoalveolärt lavage Vid provtagning av bronkoalveolärt lavage (BAL) positioneras bronkoskopet så att det isolerar luftvägarna distalt om bronkoskopspetsen, 100–150 ml fysiologisk natriumkloridlösning (NaCl-lösning) injiceras och aspireras i portioner B A KG R U N D S D O K U M E N TAT I O N om 20–50 ml. Man uppskattar att utbytet av en sådan sköljning motsvarar cirka 1 ml vätska från de perifera luftvägarna, vilket innebär en spädningsfaktor på 10–100 (1). Ett odlingsresultat på 10 4 cfu/ml motsvarar därför 105 –106 cfu/ ml i luftvägarna (8). I en sammanställning av 23 studier av intensivvårdspatienter fann Chastre et al. att sensitivitet och specificitet avseende bakteriell pneumoni var 73 respektive 82 % med gränsvärdet 10 4 cfu/ml (4). BAL är en mer användbar metod än skyddad borste om man önskar göra bredare diagnostik av infektioner med virus, mykobakterier, Legionella, mögelsvampar och Pneumocystis jirovecii, samt för cytologisk diagnostik av icke-infektiösa lungsjukdomar. Bronksekret och bronksköljvätska Vid diagnostik av luftvägsinfektioner tas ofta prov i bronkträdet nedanför trakea utan att bronkoskopspetsen kilas fast i en bronk, oftast med sköljning med 10–20 ml NaCl-lösning. Alternativt aspireras bronksekret direkt utan sköljning. Enligt svenska riktlinjer analyseras dessa odlingar inte kvantitativt. Tekniken återspeglar bakterieförekomsten i de proximala luftvägarna mer än bakterieförekomsten i periferin, vilket gör att dessa odlingar mer motsvarar odling av trakealsekret än en korrekt utförd BAL (2). Bronksekret som aspirerats utan spädning kan därför skickas till laboratoriet som trakealsekret. Bronksköljvätska bör enbart användas för kvalitativa odlingar. ”BAL är en mer användbar metod än skyddad borste för bredare diagnostik” Mini-BAL och lågvolyms-BAL I litteraturen har begreppet mini-BAL använts för att beskriva en icke-bronkoskopisk (blind) teknik tillämpad på intuberade patienter (9,10). Detta innebär att en kateter förs ned via endotrakealtuben tills man känner motstånd; varefter 10–20 ml fysiologisk NaCl-lösning injiceras och sedan aspireras. Utbytet är ofta mindre än 20 % av den injicerade volymen (11). Kollef et al. (9) jämförde odlingar från mini-BAL med odlingar från skyddad borste. Gränsvärdet ≥ 103 cfu/ml tillämpades för båda teknikerna. I 83 % av fallen ledde båda teknikerna till samma slutsats avseende förekomst av infektion. Bregeon et al. (10) fann en sensitivitet på 78 % och en specificitet på 86 % när mini-BAL (≥ 103 cfu/ml) jämfördes med en kombination av histopatologi och vävnadsodling. Bronkoskopisk provtagning på svenska intensivvårdsavdelningar omfattar ofta BAL med en mindre volym sköljvätska (10–20 ml NaCl-lösning och utbyte < 10 ml), en teknik som påminner en del om mini-BAL och som ibland betecknas lågvolyms-BAL. Det är oklart vilket gränsvärde som ska tillämpas för dessa odlingar, ≥ 10 4 cfu/ml som för BAL eller ≥ 103 cfu/ml som föreslagits för mini-BAL, men det är tänkbart att ett gränsvärde på 10 4 cfu/ml ger för låg sensitivitet. Trakealsekret Bakteriell kolonisation av trakea är vanligt hos intuberade intensivvårdspatienter. Kvalitativa odlingar av trakealsekret är därför av begränsat värde för att diagnostisera infektion i nedre luftvägarna. Positiva odlingsresultat är vanliga även utan infektion (12). Negativa odlingsresultat talar dock starkt mot infektion (3,4,13). I en studie av intensivvårdspatienter med misstänkt VAP hade odlingar från trakea med ≥105 cfu/ml en sensitivitet på 91 % och en specificitet på 72 % jämfört med odlingar från skyddad borste (≥ 103 cfu/ml) (14). Gränsvärdet ≥ 106 cfu/ml resulterade i högre specificitet (95 %) men oacceptabelt låg sensitivitet (45 %). I en liknande studie jämfördes odlingar från BAL och skyddad borste med odlingar från trakea med ≥ 106 cfu/ml (15). Sensitiviteten var 68 % och specificiteten 84 % avseende förekomst av bakteriell pneumoni. Jämfört med en retrospektiv bedömning av huruvida patienten haft pneumoni eller inte visade en annan studie att trakealodlingar med ≥ 106 cfu/ml hade en sensitivitet på 82 % och en specificitet på 83 % (16). Sammantaget ger en koncentration på ≥ 105 –106 cfu/ml i kvantitativ trakealodling stöd för infektion (5,17). Sputum och nasofarynxodling Sputumprov blir alltid kontaminerade av bakterier från övre luftvägarna och är därför ofta svårtolkade. Dessutom krävs ett prov som är representativt för nedre luftvägar och i många situationer är det svårt för patienter att producera ordentliga sputumprov. Detta kan dock avhjälpas med inducerat sputum och stöd från fysioterapeut eller annan utbildad personal. Det är dessutom visat att man med sputumtvätt kan få bort runt 99 % av munfloran som kontaminerar proven (18). Utan kvantitativ odlingsteknik har sputumprov begränsat värde, men representativa sputumprov som dessutom har genomgått tvätt kan utgöra ett mycket bra alternativ till bronkoskopiska prov i de situationer där det inte är görbart med invasiv provtagnig. Nasofarynxodling har historiskt varit en populär metod då proven är enkla att ta. Det saknas dock vetenskapligt stöd för att det som hittas i odlingen är representativt för bakterier som finns i infektionshärden. Ett undantag är fynd av pneumokocker hos vuxna, som har visat sig förekomma oftare hos patienter med pneumokockpneumoni än hos patienter med annan genes till pneumoni (19). Urinantigentester Kommersiella metoder finns för både Streptococcus pneumoniae och Legionella pneumophila, serogrupp 1. Positivt testresultat har högt prediktivt värde för pneumoni orsakat av dessa agens, medan negativt resultat inte utesluter dessa agens. Pneumokockantigentestet har högre känslighet vid I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 43 B A KG R U N D S D O K U M E N TAT I O N des 346 patienter med 443 Bbakterieisolat. I 95 % avTAT fallen A KG R U N D S D O KUMEN ION isolerades bakterier från skyddad borste. Fördelningen av bakterier i Stockholmsstudien ses i Figur 2. En skillnad mellan studierna är att studien från Skåne hade lunginfiltrat som inklusionskriterium, vilket inte krävdes i studien från Stockholm. Kortast tid för sjukhusvård och mekanisk ventilation sågs vid samhällspatogener som S. pneumoniae, H. influenzae och betastreptokocker, och längst tid vid typiska sjukhuspatogener som S. maltophilia. Svenska resistensdata saknas till stor del för luftvägsisolat som orsakar sjukhusförvärvad pneumoni. Man kan inte heller utan vidare extrapolera från blododlingsdata, då flera av de bakterier som är viktiga vid luftvägsinfektioner förekommer i mycket liten grad i positiva blododlingar. I Tabell II och III visas resistenssituationen bland vanliga luftvägspatogener vid Karolinska Universitetslaboratoriet (som tar emot odlingar från Karolinska Universitetssjukhuset Huddinge och Solna, Södersjukhuset, Danderyds sjukhus, Norrtälje sjukhus och Södertälje sjukhus). I tabellerna visas endast odlingar från borste, BAL och trakealsekret och endast från provavsändare inom slutenvård. Däremot är detta inte verifierade pneumonier, utan positiva luftvägsodlingar som även kan representera kolonisation. Som statistiken visar ses inga dramatiska resistenstrender under åren 2013–2014, men andelen karbapenemresistenta Acinetobacter (som även är resistenta mot ciprofloxacin och gentamicin) ligger numera på en relativt hög nivå. Under åren 2013–2014 sågs ett fall av ESBL CARBA (KPC) hos Klebsiella pneumoniae. Ampicillinresistensen hos H. influenzae ligger relativt högt, men nästan alla isolat är känsliga för cefotaxim. För pneumokocker ses relativt hög förekomst av intermediärt känsliga isolat, men dessa är känsliga för hög dos bensylpenicillin och alltid för cefotaxim. Meticillinresistenta Staphylococcus aureus (MRSA) är ovanligt. bakteriemi (> 70 %) än vid pneumoni (> 55 %) och det är i övrigt visat att känsligheten är högre hos patienter med njursvikt (20). Specificiteten anses vara 80–100 % hos vuxna. För L. pneumophila, serogrupp 1, ses en sensitivitet runt 70 % och en specificitet runt 90 % (21). Det är dock viktigt att vara medveten om att övriga serogrupper av L. pneumophila samt övriga Legionella-arter inte kan påvisas med urinantigentestet. Indikationen för att använda Legionella urinantigentest är därför svår pneumoni, där L. pneumophila, serogrupp 1 misstänks. Provtyper och gränsvärden vid kvantitativa luftvägsodlingar anges i Tabell I. Etiologi och resistensepidemiologi Det har publicerats några svenska undersökningar av bakteriell etiologi de senaste fem åren. I en undersökning från Skåne undersöktes 109 patienter med VAP-diagnos. Patienter som hade fått VAP-diagnosen < 48 timmar efter intubation, eller de som saknade radiologiska tecken på pneumoni, exkluderades (22). Totalt uppfyllde 65 patienter inklusionskriterierna och av dessa hade 81,5 % positiv odling från skyddad borste. I Figur 1 presenteras fördelningen av patogener, dock har Streptococcus milleri exkluderats från sammanställningen, då dessa betraktas som normal luftvägsflora av författaren av detta bakgrundsdokument. Som syns i Figur 1 var P. aeruginosa, H. influenzae, E. coli och S. aureus de vanligaste patogenerna. Fördelningen av late-onset och early-onset var 32 jämfört med 33. Den enda statistiskt signifikanta skillnaden mellan grupperna var flera negativa odlingar i late-onset. En något nyare undersökning från Stockholm inkluderade patienter med signifikant växt av bakterier i skyddad borste eller BAL under perioden 2002–2010 (23). Totalt inkludera- Tabell I. Provtyper och gränsvärden vid kvantitativa luftvägsodlingar. Provtagningsteknik Beskrivning Gränsvärde för signifikans (cfu/ml) Gränsvärde för möjlig signifikans (cfu/ml) BAL BAL via bronkoskop, aspiration av cirka 100 ml ≥ 104 103 Lågvolyms-BAL BAL via bronkoskop, aspiration av 1–10 ml ≥ 103 –104 102–103 Skyddad borste ≥ 103 102 Trakealsekret och sputum 105 –106 104 Bronksekret Klassificera som trakealsekret Klassificera som trakealsekret Bronksköljvätska Kvantifieras ej Kvantifieras ej Nasofarynxsekret Kvantifieras ej Kvantifieras ej 44 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 B A KG R U N D S D O K U M E N TAT I O N Figur 1. Fördelning av bakteriearter vid odlingsverifierad VAP, Skåne 2004–2007. S. agalactiae, 2 S. pneumoniae, 2 P. aeruginosa, 20 S. aureus, 12 S. maltophilia, 2 Serratia spp., 3 Citrobacter spp., 5 Morganella spp., 5 H. influenzae, 18 Proteus spp., 5 Klebsiella spp., 6 E. coli, 14 Enterobacter spp., 6 Figur 2. Fördelning av bakteriarter vid VAP, Karolinska Universitetssjukhuset 2002–2010. S. maltophilia, 4 P. aeruginosa, 7 Betahemolytiska streptokocker, 1 Acinetobacter spp., 2 Övriga bakterier, 4 P. mirabilis, 1 Citrobacter spp., 2 S. aureus, 21 Serratia spp., 4 S. pneumoniae, 9 Enterobacter spp., 7 Klebsiella spp., 11 H. influenzae, 13 E. coli, 13 Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • 45 B A KG R U N D S D O K U M E N TAT I O N Tabell II. Andel resistenta isolat i nedre luftvägsodlingar från slutenvård. Karolinska Universitetslaboratoriet 2013–2014. Antibiotika E. coli (n = 208)1 K. pneumoniae (n = 258) P. aeruginosa (n = 372) Cefotaxim 9,0 5,8 Ceftazidim 7,1 5,8 11,8 Piperacillin-tazobactam 3,3 4,3 14,2 Acinetobacter (n = 55) Meropenem 0 0,4 11,0 14,6 Imipenem 0 0,4 16,7 14,6 Ciprofloxacin 14,3 4,3 7,2 14,8 Gentamicin 6,1 2,7 1,7 13,0 Samtliga isolat från 2014. Tomma celler innebär naturlig resistens mot preparatet hos den aktuella bakterien. 1 Tabell III. Andel resistenta isolat i nedre luftvägsodlingar från slutenvård (endast borste, BAL, trakealsekret). Karolinska Universitetslaboratoriet 2013–2014. Antibiotika S. aureus (n = 736) Isoxazolylpenicillin 2,31 Klindamycin 4,4 Bensylpenicillin S. pneumoniae (n = 266) H. influenzae (n = 533) 8,3 15,82 Ampicillin 17,8 Cefotaxim 0,6 Resistenta mot isoxazolylpenicillin, det vill säga MRSA. Inga av isolaten var resistenta, utan samtliga var intermediärt känsliga och kan behandlas med hög dos bensylpenicillin. Tomma celler innebär naturlig resistens mot preparatet hos den aktuella bakterien. 1 2 En annan intressant parameter vad gäller antibiotikakänslighet kan vara att ange andelen som är känsliga för ett viktigt empiriskt antibiotikum. I en artikel av Hyllienmark och medarbetare har man redovisat förekomsten av cefotaximresistens som funktion av tid med mekanisk ventilation och sjukhusvård (23). I studien såg man en tydlig ökning av andelen cefotaximresistenta isolat över tid, både mätt utifrån tid med mekanisk ventilation och sjukhusvård. Cefotaximkänsliga isolat räknades som betastreptokocker, S. pneumoniae, S. aureus, H. influenzae och Enterobacteriaceae. Kvalitativ odling versus kvantitativ odling En forskargrupp från Brasilien har vid upprepade tillfällen gjort Cochrane-översikter av nyttan av kvantitativa luftvägsodlingar vid diagnostik av VAP. Den senaste artikeln publicerades 2014 och visade inga nytillkomna studier sedan 2006 (24). Analysen baseras på två studier från 2000 och en studie från 2006. Totalt hade 142 patienter fått en kvantitativ odling utförd och 159 en kvalitativ odling. Författarna kunde inte se några signifikanta skillnader gällande mortalitet, byte av antibiotika, tid med mekanisk ventilation eller vårdtid. Generellt observerades låg mortalitet i studierna, sannolikt som uttryck för att många fick korrekt initial behandling. 46 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 Trots bristen på tydligt stöd för att kvantitativa odlingar påverkar prognosen gynnsamt, är det sannolikt att kvantitativa odlingar ökar specificiteten i diagnostiken (25,26). Man skulle sannolikt få en betydande överbehandling av kolonisationen ifall man tog bort den kvantitativa dimensionen. Det är däremot klart att gränsvärden alltid måste ses som vägledande och inte som absoluta sanningar. Saker som kan påverka det kvantitativa resultatet är antibiotikabehandling innan provtagning (4,16,27), provtagning tidigt i förloppet (28) och problem med reproducerbarhet i provtagningen (29). Kliniska behandlingsbeslut måste därför alltid grundas på en bedömning av sannolikheten för infektion, där resultaten från kvantitativa odlingar vägs samman med andra parametrar (1). Betydelse av rutinodlingar under vårdtiden Rutinodlingar under vårdtiden, som screening för förekomst av resistenta bakterier, har varit ett kontroversiellt ämne under lång tid och praxis har skilt sig åt både inom Sverige och mellan länder. En metaanalys från 2012 visade att övervakningsodlingar kan ha upp mot 75 % sensitivitet och 92 % specificitet för senare påvisade patogener vid odlingspositiv VAP (30). Två rutinodlingar per vecka och beaktande av resultaten från den senaste övervakningsodlingen B A KG R U N D S D O K U M E N TAT I O N I diagnostiken av M. tuberculosis kan IGRA-test (InterferonGamma Release Assay) utfört på serum vara ett värdefullt komplement. Detta test mäter frisättning av IFN-γ från T-lymfocyter som stimulerats med M. tuberculosis-specifika antigen, som tecken på förekomst av cellförmedlat immunsvar mot M. tuberculosis. Resultatet avspeglar immunförsvarets förmåga att reagera på tidigare exponering för M. tuberculosis. Det används i första hand för att detektera latent tuberkulosinfektion, men kan egentligen inte skilja på latent och aktiv tuberkulos. Vanliga användningsområden är utredning i samband med smittspårning eller inför planerad immunsupprimerande behandling, men testet kan också användas för att screena för latent tuberkulos hos högriskgrupper. Utfallet måste i varje enskilt fall tolkas i sitt kliniska sammanhang och kan inte ensamt bekräfta eller utesluta en tuberkulosinfektion. Den molekylärbiologiska diagnostiken är generellt på frammarsch, men det finns än så länge inga studier som har visat en klar plats för molekylärbiologisk diagnostik av klassiska luftvägspatogener. Ytterligare en komplicerande faktor är att man sannolikt behöver kvantitativa PCR-metoder, vilket har visats för patogener som S. pneumoniae och H. influenzae i diagnostiken av samhällsförvärvad pneumoni (31). Molekylärbiologiska metoder kan vara önskvärda att införa för att korta tiden för diagnostik. Som alltid måste risken för överdiagnostik beaktas om man inför metoder med hög känslighet som inte kan skilja mellan kolonisation och infektion. har visat sig ha högre grad av precision (78 % sensitivitet, 96 % specificitet). I en miljö med hög förekomst av multiresistenta bakterier, till exempel MRSA och multiresistenta Pseudomonas, kan övervakningsodlingar två gånger per vecka antagligen vara motiverade. Om multiresistenta bakterier inte kan påvisas i dessa odlingar är sannolikheten för en påföljande VAP orsakad av multiresistenta patogener låg. Övrig mikrobiologisk diagnostik Patogener som Legionella pneumophila, övriga Legionella species, Mycoplasma, Chlamydophila, Bordetella pertussis, Pneumocystis jirovecii och mykobakterier kan inte påvisas med vanliga luftvägsodlingar och tillhör den utvidgade diagnostik som kan vara indicerad. Jäst- och mögelsvamp samt Nocardia kan påvisas med vanliga luftvägsodlingar, men specialdiagnostik bör utföras för att säkerställa hög känslighet i detektionen. Virusdiagnostik, både luftvägsvirus (oftast på BAL) och CMV (blod och BAL) tillhör också den utvidgade utredningen. Beta-D-glukan kan förekomma i blod hos patienter med infektioner orsakade av en rad olika svamppatogener som Candida-, Aspergillus-, Fusarium-, Saccharomyces-, Trichosporon- och Acremonium-arter och även Pneumocystis jirovecii. Metoden identifierar inte infektionen till genusnivå. Ett antigentest, ELISA för galaktomannan, är av värde vid invasiv aspergillos. Det utförs på serum/plasma, likvor och BAL. För mer detaljer hänvisas till Läkemedelsverkets behandlingsrekommendation Profylax och behandling av invasiv svampinfektion vid hematologisk sjukdom samt efter stamcellstransplantation inklusive dess bakgrundsdokumentation. Sammanfattning av rekommendationer gällande diagnostik Rekommenderad provtagningsmetod vid misstänkt HAP/ VAP anges i Tabell IV. Tabell IV. Rekommenderad provtagning vid misstänkt HAP/VAP. Mikrobiologiskt test HAP exkl. VAP VAP HAP hos immunsupprimerade Nedre luftvägsodling x x x Blododlingar x x x Bakterier Urinantigen - pneumokocker x x x Urinantigen samt påvisande av Legionella i nedre luftvägar (x) (x) x PCR Mycoplasma/ Chlamydophila (x) (x) x Mykobakterier (x) (x) x Nocardia x Virus PCR för luftvägsvirus (x) (x) Kvantitativ PCR för CMV i BAL, ev. i blod x x Svamp Pneumocystis jirovecii (x) x Mögelsvampdiagnostik (x) x Kryss i tabellen innebär att den diagnostiska metoden bör utföras. Kryss inom parentes innebär att man bör överväga att utföra diagnostiken utifrån klinisk bild. I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • 47 B A KG R U N D S D O K U M E N TAT I O N Referenser 1. Petersson J, Kalin M, Giske CG. Kvantitativa odlingar från nedre luftvägarna och hur de ska tolkas. Läkartidningen. 2009;106:2052–6. Baselski VS, Wunderink RG. Bronchoscopic diagnosis of pneumonia. Clin Microbiol Rev 1994;7:533–58. American Thoracic Society (ATS). Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005;171:388–416. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002;165:867–903. Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev 2006;19:637–57. Baughman RP. Protected-specimen brush technique in the diagnosis of ventilator-associated pneumonia. Chest 2000;117:203S–206S. Campbell GD, Jr. Blinded invasive diagnostic procedures in ventilator-associated pneumonia. Chest 2000;117:207S–211S. Meduri GU, Chastre J. The standardization of bronchoscopic techniques for ventilator-associated pneumonia. Chest 1992;102:557S– 564S. Kollef MH, Bock KR, Richards RD, et al. The safety and diagnostic accuracy of minibronchoalveolar lavage in patients with suspected ventilator-associated pneumonia. Ann Intern Med 1995;122:743–8. Bregeon F, Papazian L, Thomas P, et al. Diagnostic accuracy of protected catheter sampling in ventilator-associated bacterial pneumonia. Eur Respir J 2000;16:969–75. Erden V, Basaranoglu G, Beycan I, et al. Reproducibility of mini-BAL culture results using 10 ml or 20 ml instilled fluid. Intensive Care Med 2003;29:1856. Brun-Buisson C, Fartoukh M, Lechapt E, et al. Contribution of blinded, protected quantitative specimens to the diagnostic and therapeutic management of ventilator-associated pneumonia. Chest 2005;128:533–44. Kirtland SH, Corley DE, Winterbauer RH, et al. The diagnosis of ventilator-associated pneumonia: a comparison of histologic, microbiologic, and clinical criteria. Chest 1997;112:445–57. Wu CL, Yang D, Wang NY, et al. Quantitative culture of endotracheal aspirates in the diagnosis of ventilator-associated pneumonia in patients with treatment failure. Chest 2002;122:662–8. Jourdain B, Novara A, Joly-Guillou ML, et al. Role of quantitative cultures of endotracheal aspirates in the diagnosis of nosocomial pneumonia. Am J Respir Crit Care Med 1995;152:241–6. Marquette CH, Georges H, Wallet F, et al. Diagnostic efficiency of endotracheal aspirates with quantitative bacterial cultures in intubated patients with suspected pneumonia. Comparison with the protected specimen brush. Am Rev Respir Dis 1993;148:138–44. Cook D, Mandell L. Endotracheal aspiration in the diagnosis of ventilator-associated pneumonia. Chest 2000;117:195S–197S. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Kalin M. Bacteremic pneumococcal pneumonia: value of culture of nasopharyngeal specimens and examination of washed sputum specimens. Eur J Clin Microbiol 1982;1:394–6. 19. Hedlund J, Örtqvist A, Kalin M. Nasopharyngeal culture in the pneumonia diagnosis. Infection 1990;18:283–5. 20. Selickman J, Paxos M, File TM Jr, et al. Performance measure of urinary antigen in patients with Streptococcus pneumoniae bacteremia. Diagn Microbiol Infect Dis 2010;67:129–33. 21. Yu VL, Stout JE. Rapid diagnostic testing for community-acquired pneumonia: can innovative technology for clinical microbiology be exploited? Chest 2009;136:1618–21. 22. Ahl J, Tham J, Walder M, et al. Bacterial aetiology in ventilator-associated pneumonia at a Swedish university hospital. Scand J Infect Dis 2010;42:469–74. 23. Hyllienmark P, Martling CR, Struwe J, et al. Pathogens in the lower respiratory tract of intensive care unit patients: impact of duration of hospital care and mechanical ventilation. Scand J Infect Dis 2012;44:444–52. 24. Berton DC, Kalil AC, Teixeira PJ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia.Cochrane Database Syst Rev 2014;10:CD006482. 25. Combes A, Luyt CE, Trouillet JL, et al. Controversies in ventilatorassociated pneumonia. Semin Respir Crit Care Med 2010;(1):47–54. 26. Rea-Neto A, Youssef NC, Tuche F, et al. Diagnosis of ventilator-associated pneumonia: a systematic review of the literature. Crit Care 2008;12:R56. 27. Souweine B, Veber B, Bedos JP, et al. Diagnostic accuracy of protected specimen brush and bronchoalveolar lavage in nosocomial pneumonia: impact of previous antimicrobial treatments. Crit Care Med 1998;26:236–44. 28. Dreyfuss D, Mier L, Le Bourdelles G, et al. Clinical significance of borderline quantitative protected brush specimen culture results. Am Rev Respir Dis 1993;147:946–51. 29. Timsit JF, Misset B, Francoual S, et al. Is protected specimen brush a reproducible method to diagnose ICU-acquired pneumonia? Chest 1993;104:104–8. 30. Brusselaers N, Labeau S, Vogelaers D, et al. Value of lower respiratory tract surveillance cultures to predict bacterial pathogens in ventilator-associated pneumonia: systematic review and diagnostic test accuracy meta-analysis. Intensive Care Med. 2013;39:365–75. 31. Johansson N, Kalin M, Tiveljung-Lindell A, et al. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis 2010;50:202–9. Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se 48 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 B A KG R U N D S D O K U M E N TAT I O N Sjukhusförvärvade pneumonier – behandling/handläggning Jonas Hedlund Sammanfattning Sjukhusförvärvad pneumoni (hospital-acquired pneumonia, HAP) är en av de vanligaste nosokomiala infektionerna och sjukdomen är associerad med hög mortalitet och morbiditet. Hos immunkompetenta patienter är det huvudsakligen bakterier som orsakar HAP. De två vanligaste smittämnena är Pseudomonas aeruginosa och Staphylococcus aureus. Spektrum av patogener och resistensmönster varierar, varför det är viktigt att ha kännedom om den lokala situationen. Vid initial empirisk behandling är det viktigast att ge korrekt antibiotikabehandling så snabbt som möjligt efter diagnos. Den bästa strategin för att minska mortaliteten anses vara att initialt ge en bred antibiotikabehandling för att sedan modifiera denna efter odlingssvar. Tidpunkten när patienten insjuknar i pneumoni efter inläggning på sjukhus har visat sig vara en viktig epidemiologisk och prognostisk variabel. HAP som debuterar inom fyra dagar efter inläggningen orsakas som regel av vanliga samhällsförvärvade bakterier, medan HAP som debuterar fem dagar eller mer efter inläggningen oftare orsakas av mer resistenta bakterier och har en sämre prognos. Även hos patienter som nyligen sjukhusvårdats eller nyligen behandlats med antibiotika, ses en ökad förekomst av resistenta bakterier. För kritiskt sjuka patienter med HAP som har riskfaktorer för resistenta bakterier rekommenderas internationellt behandling med kombinationer av antibiotika från olika antibiotikaklasser. För patienter med HAP utan riskfaktorer för resistenta bakterier som inträffar efter mindre än fem dagars sjukhusvård rekommenderas monoterapi. När en patogen identifierats är det angeläget att rikta antibiotikabehandlingen mot den aktuella bakterien för att undvika resistensutveckling mot bredspektrumantibiotika. Kort behandlingstid (7– 8 dagar) har samma kliniska effekt som lång (10 –15 dagar) och innebär ett minskat antal recidiv av multiresistenta bakterier. Definitioner – avgränsning Sjukhusförvärvad pneumoni (hospital-acquired pneumonia, HAP) definieras som pneumoni som debuterar mer än 48 timmar efter ankomsten till ett sjukhus (1). Ventilatorassocierad pneumoni (VAP) är en viktig undergrupp av sjukhusförvärvad pneumoni och definieras som pneumoni som uppkommer mer än 48 timmar efter intubation. Omkring en tredjedel av HAP inträffar på intensivvårdsavdelningar och av dessa svarar VAP för omkring 90 % av fallen (2). De flesta studier av patienter med sjukhusförvärvad pneumoni har fokuserat på patienter med VAP, varför det vetenskapliga underlaget för patienter med HAP som spontanandas är begränsat. Health care-associated pneumonia (HCAP) är en annan undergrupp av patienter med vårdrelaterad pneumoni som inkluderar bland annat patienter i öppenvård, dagvård och patienter som nyligen sjukhusvårdats. Begreppet HCAP som relativt nyligen introducerats i USA har dock inte anammats i Europa, bland annat på grund av tvivel på dess validitet (3). Detta bakgrundsdokument omfattar sjukhusförvärvad pneumoni inklusive VAP, men inte HCAP. Dokumentet omfattar inte heller immunsupprimerade patienter eftersom dessa drabbas av infektioner med ett annat etiologiskt spektrum som kräver andra terapeutiska strategier. Internationella riktlinjer Evidensbaserade riktlinjer för handläggning och behandling av vårdrelaterad pneumoni i USA har publicerats av American Thoracic Society (ATS) och Infectious Diseases Society of America (IDSA) (1). Motsvarande dokument för europeiska förhållanden har publicerats av European Respiratory Society (ERS), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) och European Society of Intensive Care Medicine (ESICM) (4). Nationella riktlinjer finns också publicerade i England (5) och i Tyskland (3). I Sverige saknas nationella riktlinjer för handläggning och behandling av sjukhusförvärvad pneumoni. På landstingsnivå har Strama Stockholm 2013 publicerat rekommendationer för behandling av sjukhusförvärvad pneumoni (www.janusinfo.se/strama). ”Hos immunkompetenta patienter är de flesta pneumonier bakteriella” Etiologi Hos immunkompetenta patienter är det huvudsakligen bakterier som orsakar sjukhusförvärvad pneumoni. Polymikrobiell etiologi är inte ovanligt, och de två vanligast förekommande smittämnena är Pseudomonas aeruginosa och Staphylococcus aureus (6). Andra patogener som förekommer är bland annat bakterier som Enterobacteriaceae, Haemophilus influenzae, Acinetobacter, betahemolytiska streptokocker och pneumokocker. Pneumokocketiologi är dock betydligt mindre vanligt vid sjukhusförvärvad pneumoni än vid samhällsförvärvad pneumoni. Bland patienter med kroniska lungsjukdomar förekommer H. influenzae och Moraxella catarrhalis i större utsträckning. Legionella är en relativt ovanlig orsak till HAP, men epidemier på sjukhus förekommer. Anaeroba bakterier ses framför allt vid aspiration. Virus och svamp som etiologi är ovanligt hos immunkompetenta patienter. Fynd i luftvägssekret av bakterier och svampar I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 49 B A KG R U N D S D O K U M E N TAT I O N som tillhör den flora som normalt koloniserar farynx har som regel inte någon relevans för behandlingen av HAP. Till dessa hör enterokocker, corynebakterier, apatogena Neisseriaarter, alfahemolytiska streptokocker, koagulasnegativa stafylokocker och olika arter av Candida (3). Patogener och resistens Det finns avsevärda skillnader såväl regionalt som lokalt avseende spektrum av patogener och resistensmönster. Det är därför viktigt att ha kännedom om den lokala situationen vid handläggningen av patienter med HAP. Enheter som vårdar patienter med HAP bör därför, i samarbete med de mikrobiologiska laboratorierna, sträva efter att regelbundet sammanställa och analysera data avseende aktuella patogener och resistensläge. Då kan dessa data utnyttjas i beslutsprocessen vid val av empirisk antibiotikabehandling. Antibiotikabehandling av sjukhusförvärvad pneumoni Initial empirisk behandling Viktigast är att ge korrekt antibiotikabehandling så snabbt som möjligt efter diagnos. Såväl fördröjd (7) som inadekvat (8) antibiotikaterapi av HAP innebär avsevärt försämrad prognos. Hos patienter med VAP innebär inte heller modifiering av inadekvat terapi efter odlingssvar någon säker förbättring av prognosen (9), sannolikt på grund av att det tar alltför lång tid innan odlingssvar erhålls. Därför anses den bästa strategin för att minska mortaliteten vara att initialt ge en bred antibiotikabehandling för att sedan modifiera denna efter odlingssvar, så kallad de-escalation (10). Denna strategi rekommenderas i behandlingsriktlinjer såväl i USA (1) som i Europa (4). Till mindre allvarligt sjuka patienter bör istället en alltför bred antibiotikabehandling undvikas för att minska resistensproblematiken. Vid val av initial antibiotikabehandling har tre faktorer visat sig ha en avgörande betydelse (4): • Pneumoni hos patient med spontanandning eller hos patient i respirator • Pneumoni som inträffar tidigt (inom fyra dagar) eller senare efter inläggning på sjukhus • Förekomst av definierade riskfaktorer ”HAP som debuterar ≥ 5 dagar efter inläggning orsakas oftare av mer resistenta bakterier” Hos patienter med spontanandning anses potentiellt antibiotikaresistenta bakterier spela en mindre roll och etiologin domineras av gramnegativa tarmbakterier, S. aureus och pneumokocker (4). Det finns dock få bra studier avseende etiologiskt spektrum för patienter som inte respiratorvårdas, men enstaka studier (11) har visat en hög andel HAP orsakade av Pseudomonas för dessa patienter. 50 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 Tidpunkten när patienten insjuknar i pneumoni efter inläggning på sjukhus är en viktig epidemiologisk variabel och prognostisk riskfaktor. HAP som debuterar inom fyra dagar efter inläggningen orsakas oftast av vanliga samhällsförvärvade bakterier som pneumokocker, H. influenzae och S. aureus och har bättre prognos. HAP som debuterar fem dagar eller mer efter inläggningen orsakas oftare av mer resistenta bakterier som P. aeruginosa, Acinetobacter och Enterobacter och har sämre prognos (1,12). Även hos patienter som nyligen sjukhusvårdats eller nyligen behandlats med antibiotika ses en ökad förekomst av resistenta bakterier. I de amerikanska rekommendationerna för behandling av HAP (1) har ett antal riskfaktorer för resistenta patogener identifierats (Faktaruta 1). En omdebatterad fråga är huruvida man kan använda sig av tidigare odlingar från luftvägssekret för att ge riktad empirisk behandling av senare VAP. En relativt färsk studie (13) fann dock en dålig överensstämmelse mellan tidigare odlingar och odlingar utförda vid tidpunkten för VAP. Faktaruta 1. Riskfaktorer för resistenta patogener som orsakar sjukhusförvärvad pneumoni. Modifierat efter (1). • • • • • • • • • Antibiotikabehandling under de närmast föregående 90 dagarna. Nuvarande sjukhusvård i fem dagar eller mer. Hög andel antibiotikaresistens i samhället eller på den specifika enheten där patienten vårdas. Sjukhusvård inneliggande i två dagar eller mer under de närmast föregående 90 dagarna. Infusionsbehandling i hemmet (inklusive antibiotika). Kronisk dialys under de närmast föregående 30 dagarna. Sårbehandling i hemmet. Familjemedlem med multiresistent patogen. Immunsuppressiv sjukdom och/eller behandling. Kombinationsbehandling eller monoterapi vid empirisk behandling För kritiskt sjuka patienter med HAP med riskfaktorer för resistenta bakterier kan det vara aktuellt att behandla med kombinationer av antibiotika från olika antibiotikaklasser. I en färsk systematisk översikt från Cochrane (14) jämfördes kombinationsbehandling med betalaktamantibiotika och aminoglykosid med monoterapi med betalaktamantibiotika vid sepsis. Man såg ingen fördel med kombinationsbehandlingen avseende prognosen. Man fann inte heller någon skillnad i resistensutveckling mellan de studerade regimerna. I en metaanalys av randomiserade, kontrollerade studier som utvärderade empirisk antibiotikabehandling av vuxna patienter med kliniskt suspekt VAP, fann man ingen skillnad i mortalitet eller behandlingssvikt vid jämförelse mellan monoterapi och kombinationsbehandling (15). Många av de artiklar som inkluderades i analysen var dock av dålig metodologisk kvalitet, varför tillgängliga data inte kunde besvara frågan om vilken empirisk behandling som var den bästa. I internationella riktlinjer för behandling av HAP som inträffar efter fem dagars sjukhusvård eller mer (late onset), rekommenderas dock kombinationsbehandling såväl i USA (1) som i Europa (4). Argumentet för kombinationsbehand- B A KG R U N D S D O K U M E N TAT I O N ling är att bredda antibakteriellt spektrum i avvaktan på odlingssvar. Det är också visat att kombinationsbehandling vid VAP orsakat av P. aeruginosa minskar risken för inadekvat behandling, vilket är associerat med ökad mortalitet (16). I Europa rekommenderas i första hand en kombination av betalaktamantibiotika och kinolon, där preparaten från båda antibiotikaklasserna har pseudomonasaktivitet (4). I USA rekommenderas ett betalaktamantibiotikum med pseudomonasaktivitet i kombination med antingen en kinolon med pseudomonasaktivitet eller i kombination med en aminoglykosid (1). Både i Europa och i USA rekommenderas också tillägg av linezolid eller vankomycin om meticillinresistenta S. aureus (MRSA) är en potentiell patogen. För patienter med HAP som inträffat efter mindre än fem dagars sjukhusvård och där patienten saknar andra riskfaktorer för resistenta bakterier, är de europeiska rekommendationerna behandling med aminopenicillin + betalaktamashämmare eller monoterapi med en cefalosporin från andra eller tredje generationen, eller en respiratorisk kinolon (moxifloxacin eller levofloxacin) (4). För denna patientkategori är de amerikanska rekommendationerna behandling med ceftriaxon, kinolon, ampicillin/sulbactam eller ertapenem (1). När en patogen har identifierats är det angeläget att antibiotikabehandlingen smalnas av och riktas mot den aktuella bakterien för att undvika resistensutveckling mot bredspektrumantibiotika. Sådan riktad terapi vid VAP har visat sig vara associerad med lägre antibiotikaförbrukning utan men för patienterna (17). Vid empirisk behandling mot misstänkt HAP, där odlingar utfaller negativt och sannolikheten för HAP är låg, kan antibiotikabehandlingen avslutas när den kliniska misstanken om HAP är avskriven, ofta efter tre dagar (18). ”Det finns stora skillnader både regionalt och lokalt avseende spektrum av patogener och resistensmönster” Preemptiv behandling Patienter som genomgår mer omfattande hjärtkirurgi är en högriskgrupp för att drabbas av VAP och ventilatorassocierad trakeobronkit (VAT). I en öppen, prospektiv, randomiserad studie (19) som omfattade 78 patienter, behandlades 40 med linezolid och meropenem i tre dagar och 38 patienter gavs placebo. Man fann en signifikant lägre incidens av VAP/VAT i behandlingsgruppen, men ingen skillnad i vårdtid på IVA, vårdtid på sjukhus, antibiotikaförbrukning eller mortalitet. Efter studiens slut fann man en ökning av linezolidresistenta stafylokocker på intensivvårdsavdelningen. Inhalationsbehandling med antibiotika Andelen HAP orsakade av multiresistenta bakterier har ökat under senare år (1). För multiresistenta gramnegativa bakterier har ofta de terapeutiska alternativen potentiellt toxiska effekter, som nefrotoxicitet och ototoxicitet för aminoglykosider och nefrotoxicitet för kolistin (20). Antibiotika administrerat i aerosolform innebär fördelar i form av högre koncentrationer lokalt i bronkerna utan systemisk ackumulering och därmed minskad risk för systemiska biverkningar (20). Vid inhalationsbehandling exponeras inte heller den gastrointestinala mikrofloran för antibiotika, vilket kan minska risken för resistensutveckling (21). I en randomiserad studie av patienter med VAP orsakad av P. aeruginosa behandlades 20 patienter med kombinationen ceftazidim + amikacin i inhalationsform och 17 patienter med samma antibiotikakombination parenteralt (22). Den kliniska effekten avseende andel patienter med framgångsrik behandling och andel patienter med superinfektioner var likartad mellan behandlingsgrupperna, men utveckling av resistens mot givna antibiotika sågs endast i gruppen som fått antibiotika parenteralt. Det finns ännu inga studier som har visat en påtaglig klinisk nytta av att använda antibiotika i aerosolform hos patienter med VAP (20). För närvarande rekommenderas inhalationsbehandling med antibiotika endast för behandling av patienter med multiresistenta bakterier, för vilka det inte finns några andra terapeutiska alternativ (23). Det rekommenderas även vid fall av dokumenterad klinisk eller mikrobiologisk utebliven effekt av parenteral antibiotikabehandling (20). Behandlingstidens längd Långvarig antibiotikabehandling av patienter med HAP leder till kolonisering av luftvägarna med resistenta bakterier som kan ge svårbehandlade recidiv av HAP. I en randomiserad kontrollerad studie av patienter med VAP jämfördes 8 och 15 dagars antibiotikabehandling (24). Åtta dagars antibiotikabehandling av VAP hade samma kliniska effekt som behandling i 15 dagar för de flesta bakterier. I de fall infektionen orsakas av icke-jäsande gramnegativa bakterier som P. aeruginosa, Acinetobacter baumanni och Stenotrophomonas maltophilia sågs fler recidiv vid behandling i 8 dagar. En Cochrane-översikt (25) jämförde kort behandling (7–8 dagar) av HAP med lång behandling (10–15 dagar) och fann att för patienter med VAP som inte orsakades av icke-jäsande gramnegativa bakterier, innebar den kortare behandlingstiden ett minskat antal recidiv av multiresistenta bakterier utan att negativt påverka behandlingsutfallet. Upprepade mätningar av serumnivåer av olika biomarkörer som C-reaktivt protein (CRP) och procalcitonin (PCT) kan också vara av värde för att stödja beslut att avsluta antibiotikabehandlingen (4,25). Aspekter på vård i livets slutskede Hög ålder är associerat med en ökad risk för HAP (26). Även frekvensen av kolonisering av luftvägarna med resistenta bakterier som MRSA, S. maltophilia och P. aeruginosa har rapporterats öka med stigande ålder (26). Det saknas dock specifika kliniska studier av HAP hos äldre, varför behandlingsrekommendationerna är desamma som för yngre patienter (1). För institutionsboende äldre personer i USA är pneumoni den vanligaste orsaken till transport till akutsjuk- I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 51 B A KG R U N D S D O K U M E N TAT I O N hus och också den vanligaste dödsorsaken för denna grupp (27). För patienter med annan terminal sjukdom som drabbas av pneumoni är den mortalitet som direkt orsakas av infektionen dock låg; antibiotika har liten effekt på livslängden och bör därför endast ges för att minska lidande (26). Referenser 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005;171:388–416. Denys GA, Relich RF. Antibiotic resistance in nosocomial respiratory infections. Clin Lab Med 2014;34:257–70. Dalhoff K, Ewig S, Abele-Horn M, et al. Adult patients with nosocomial pneumonia: epidemiology, diagnosis, and treatment. Deutsches Arzteblatt international 2013;110:634–40. Torres A, Ewig S, Lode H, et al. Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med 2009;35:9–29. Masterton RG, Galloway A, French G, et al. Guidelines for the management of hospital-acquired pneumonia in the UK: Report of the working party on hospital-acquired pneumonia of the british society for antimicrobial chemotherapy. J Antimicrob Chemother 2008;62:5–34. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med 2002;165:867–903. Iregui M, Ward S, Sherman G, et al. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 2002;122:262–8. Dupont H, Mentec H, Sollet JP, et al. Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia. Intensive Care Med 2001;27:355–62. Luna CM, Vujacich P, Niederman MS, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997;111:676–85. Rello J, Vidaur L, Sandiumenge A, et al. De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 2004;32:2183–90. Herer B, Fuhrman C, Gazevic Z, et al. Management of nosocomial pneumonia on a medical ward: a comparative study of outcomes and costs of invasive procedures. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2009;15:165–72. Hyllienmark P, Martling CR, Struwe J, Petersson J. Pathogens in the lower respiratory tract of intensive care unit patients: impact of duration of hospital care and mechanical ventilation. Scand J Infect Dis 2012;44:444–52. Sanders KM, Adhikari NK, Friedrich JO, et al. Previous cultures are not clinically useful for guiding empiric antibiotics in suspected ventilator-associated pneumonia: secondary analysis from a randomized trial. J Crit Care 2008;23:58–63. 14. Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2014;1:CD003344. 15. Aarts MA, Hancock JN, Heyland D, et al. Empiric antibiotic therapy for suspected ventilator-associated pneumonia: a systematic review and meta-analysis of randomized trials. Crit Care Med 2008;36:108– 17. 16. Garnacho-Montero J, Sa-Borges M, Sole-Violan J, et al. Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med 2007;35:1888–95. 17. Joffe AR, Muscedere J, Marshall JC, et al, Canadian Critical Care Trials G. The safety of targeted antibiotic therapy for ventilatorassociated pneumonia: a multicenter observational study. J Crit Care 2008;23:82–90. 18. Micek ST, Ward S, Fraser VJ, Kollef MH. A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 2004;125:1791–9. 19. Bouza E, Granda MJ, Hortal J, et al. Pre-emptive broad-spectrum treatment for ventilator-associated pneumonia in high-risk patients. Intensive Care Med 2013;39:1547–55. 20. Luyt CE, Brechot N, Combes A, et al. Delivering antibiotics to the lungs of patients with ventilator-associated pneumonia: an update. Expert review of anti-infective therapy 2013;11:511–21. 21. Falagas ME, Trigkidis KK, Vardakas KZ. Inhaled antibiotics beyond aminoglycosides, polymyxins and aztreonam: A systematic review. Int J Antimicrob Agents 2015;45:221–33. 22. Lu Q, Yang J, Liu Z, et al. Nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Am J Respir Crit Care Med 2011;184:106–15. 23. Chastre J, Luyt CE. Other therapeutic modalities and practices: implications for clinical trials of hospital-acquired or ventilator-associated pneumonia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2010;51 Suppl 1:S54–8. 24. Chastre J, Wolff M, Fagon JY, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. Jama 2003;290:2588–98. 25. Pugh R, Grant C, Cooke RP, et al. Short-course versus prolongedcourse antibiotic therapy for hospital-acquired pneumonia in critically ill adults. The Cochrane Database Syst Rev 2011(10):Cd007577. 26. Janssens JP, Krause KH. Pneumonia in the very old. Lancet Infect Dis 2004;4:112–24. 27. El-Solh AA, Aquilina AT, Dhillon RS, et al. Impact of invasive strategy on management of antimicrobial treatment failure in institutionalized older people with severe pneumonia. Am J Respir Crit Care Med 2002;166:1038–43. Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se 52 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 B A KG R U N D S D O K U M E N TAT I O N Pneumonier hos immunsupprimerade patienter på sjukhus Karlis Pauksens Sammanfattning Vid sjukhusförvärvad pneumoni hos immunsupprimerade patienter är bakteriell pneumoni med mera resistenta bakterier (S. aureus och gramnegativa tarmbakterier som exempelvis Enterobacter och Pseudomonas aeruginosa) vanligare än vid samhällsförvärvad pneumoni. Empirisk behandling innan svar på mikrobiologisk diagnostik innebär därför ofta bredspektrumantibiotika som piperacillin/tazobactam eller karbapenemer. Vid allvarlig pneumoni ska även antibiotika som täcker Legionella och annan atypisk pneumoni ges initialt. Förekomst av multiresistenta bakterier på sjukhuset/ avdelningen och tidigare antibiotikaprofylax eller -behandling ska också vägas in vid antibiotikavalet. Vid nedsatt T-cellsförsvar, behandling med cytostatika med efterföljande långvarig neutropeni, högdos och/eller långvarig kortikosteroidbehandling eller annan motsvarande immunsuppression, ska även annan etiologi övervägas, som svampinfektion med Aspergillus eller Pneumocystis jirovecii. Förstahandsval för aspergillusinfektion är vorikonazol och för pneumocystispneumoni högdos trimetoprim/sulfametoxazol. Cytomegalvirus-pneumoni drabbar nästan uteslutande organtransplanterade, allogent stamcellstransplanterade och barn med medfödd T-cellsdefekt. I första hand ges ganciklovir, alternativt natriumfoskarnet (Foscavir, licenspreparat). Även smitta med luftvägsvirus ska beaktas, särskilt vid allogen stamcellstransplantation, hos barn med T-cellsdefekt och lungtransplantation. Influensa A och B kan i första hand behandlas med oseltamivir, alternativt zanamivir, och respiratoriskt syncytialvirusinfektion (RSV) i viss mån med ribavirin. Ibland får även infektion med Mycobacterium tuberculosis eller atypiska mykobakterier misstänkas beroende på epidemiologi. Vid misstänkt pneumoni ska tidig och bred mikrobiell diagnostik utföras. DT-thorax kan påvisa infiltrat upp till fem dagar tidigare och ger mera information jämfört med vanlig lungröntgen (särskilt vid neutropeni). Bronkoskopi/BAL är indicerat vid terapisvikt på den initiala empiriska behandlingen eller när en opportunistisk infektion misstänks primärt. Andra orsaker till lunginfiltrat kan vara biverkan av cytotoxiska läkemedel (metotrexatlunga), strålning, malignitet eller blödning. Infektionerna kan även vara polymikrobiella. Bakgrund Pneumoni är en av de vanligaste infektionerna hos immunsupprimerade. De flesta pneumonier är samhällsförvärvade, men många immunsupprimerade får även sjukhusförvärvad pneumoni som ofta är mer svårbehandlad med högre morbiditet och mortalitet (1,2). När man misstänker pneumoni hos en immunsupprimerad patient är det viktigt att göra en bedömning av immunförsvaret eftersom det är grad och duration av immunsuppression, vilka immunsuppressiva läkemedel som getts och patientens diagnos som avgör infektionskänsligheten för olika patogena agens. Faktorer som också bidrar till att man lättare får pneumoni är nedsatt mukociliär borttransport av mikroorganismer vid mikroaspiration av orofaryngeal flora, när till exempel cytostatika ges och vid respiratorbehandling i samband med operativa ingrepp (2,3). Vid nedsatt B-cellsförsvar får man oftare infektioner med kapselförsedda bakterier, som pneumokocker. Nedsatt T-cellsförsvar ökar risken för svamp-, intracellulära bakterie- och svåra virusinfektioner. Vid neutropeni ses främst bakterie- och svampinfektioner (2). De flesta patienter har dock inte en renodlad defekt utan en kombination av immundefekter då de behandlas med flera läkemedel som påverkar immunförsvaret på olika sätt, till exempel cytostatikabehandling som ger neutropeni och B- och/eller T-cellsdefekter efter exempelvis rituximabeller alemtuzumab-behandling. Många får samtidigt behandling med steroider och patientens sjukdom i sig kan också sätta ned immunförsvaret. Detta måste beaktas när man gör en riskbedömning. Högriskpatienter för att få opportunistiska infektioner är de med grav, medfödd immundefekt, allogent stamcellstransplanterade (SCT), organtransplanterade och patienter med hematologiska maligniteter som får intensiv cytostatikabehandling med neutropeni > 7 dagar, samt andra patientgrupper med jämförbar immunsuppressiv behandling som innehåller till exempel högdosbehandling med kortikosteroider under längre tid eller T-cellsdepleterande läkemedel (2 – 5). Patienter med mindre intensiv immunsuppressiv behandling, som cancerpatienter med en neutropeniperiod ≤ 7 dagar, de flesta autologt SCT, vid många reumatiska och inflammatoriska tarmsjukdomar och en del autoimmuna sjukdomar, har oftast mindre risk för opportunistiska infektioner (4). ”Pneumoni är en av de vanligaste infektionerna hos immunsupprimerade” Vidare får många patientgrupper idag mer intensiv behandling med nya cytostatika och biologiska läkemedel, där kunskapen om hur infektionskänsligheten förändras i många fall är begränsad. Vid misstänkt pneumoni måste man därför tidigt göra en bred infektionsdiagnostik och riskbedömning innan behandling sätts in. Beroende på patientgrupp finner man en möjlig etiologi i cirka 50 % av fallen. Vanligast är bakteriell pneumoni. I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 53 B A KG R U N D S D O K U M E N TAT I O N Mikrobiologisk diagnostik Bakteriell pneumoni Antigenbaserad mikrobiologisk diagnostik som man ibland kan ha nytta av (för rutinprovtagning, se separat bakgrundsdokument Sjukhusförvärvade pneumonier – mikrobiologisk diagnostik): a) L egionella antigentest i urin för Legionella pneumophila serogrupp 1. b) Multiplex-PCR för luftvägsvirus från bronkoalveolärt lavage (BAL), nasofarynx (NPH). c) G alaktomannantest (polysackarid i cellväggen hos Aspergillus spp.) i BAL och blod för diagnos av aspergillusinfektion. PCR-metodik är för närvarande inte standardiserad. d) Pneumocystis jirovecii-detektion i BAL/sputum med PCR och immunfluorescens (IF). e) Beta-D-glukan i blod/BAL för diagnostik av svamp som Candida, Aspergillus och P. jirovecii som har beta-D-glukan i cellväggen, vilket saknas hos till exempel mucormykos. f) Cytomegalvirus (CMV)-PCR i BAL (blod). g) Adenovirus-PCR i blod. h) IGR A-test i blod vid misstanke om tuberkulos (Tb). Vid sjukhusförvärvad bakteriell pneumoni påvisas mera resistenta bakterier än vid samhällsförvärvad pneumoni, till exempel S. aureus, gramnegativa tarmbakterier som Enterobacter, Acinetobacter baumanii, Pseudomonas aeruginosa med flera. Den initiala behandlingen blir därför oftast bredspektrum-antibiotika med beaktande av tidigare antibiotikabehandling och antibiotikaprofylax och resistensläget på sjukhuset och avdelningen (1). Den högsta incidensen ses vid akut leukemibehandling och allogent SCT under neutropeniperioden, med en incidens på 15 % i äldre studier (3). Nyare studier där man gjort DT-thorax vid neutropen feber har påvisat infiltrat i upp till 50 % av fallen, varav cirka hälften uppskattades vara infektiösa. Pneumoni hos organtransplanterade är vanligast postoperativt, vilket beror på det kirurgiska ingreppet i thorax och övre delen av buken (största riskfaktorn) då patienterna har nedsatt hostförmåga och postoperativt behov av respirator/intensivvård. Det beror initialt mindre på den immunsuppressiva medicineringen (6,9–11). Överföring av mikroorganismer från det transplanterade organet är också en riskfaktor (12). Incidensen är högst vid lungtransplantation (cirka 15 %), lever- och hjärttransplantation (10 %) och lägst vid njurtransplantation. Mortaliteten i äldre studier var 25 – 60 % beroende på typ av transplantation och riskfaktorer. Nyare studier har visat lägre siffror (11,12). ”DT-thorax kan påvisa infiltrat fem dagar tidigare än lungröntgen” Radiologisk undersökning av lungorna Den kliniska situationen ska vägas in vid val av radiologisk metod. Hos patienter med kraftigt nedsatt immunförsvar och misstänkt pneumoni som inte svarar på initial empirisk behandling eller där man primärt misstänker en opportunistisk infektion, ska DT-thorax göras. DT-thorax är mera informativ och kan påvisa infiltrat fem dagar tidigare än lungröntgen (6). Karaktären av DT-thoraxfynden kan även ge vägledning om etiologin. Inget av fynden är dock specifikt för ett enda agens. Bronkoskopi/BAL Bronkoskopi/BAL är indicerat hos immunsupprimerade som inte svarar på den initiala empiriska behandlingen eller när opportunistisk infektion misstänks primärt. Empirisk behandling hos svårt sjuk patient får dock inte fördröjas i avvaktan på undersökning. Fynd av patologiskt agens har ofta varit 25 – 50 % hos febrila cancerpatienter med lunginfiltrat (7,8). Bakteriell etiologi är vanligast. Beroende på vilken patientkategori man studerat påvisades i varierande grad Aspergillus, P. jirovecii, CMV, luftvägsvirus, mykobakterier med flera (9). I 5 –15 % av fallen fann man polymikrobiell etiologi som ibland gör det svårt att avgöra om alla fynd är relevanta (10). Även om BAL har ifrågasatts ökar den sannolikheten att man får fram etiologiskt agens vid pneumoni och ibland kan diagnos endast sättas med denna undersökning, se avsnitt om Pneumoni orsakad av mögelsvamp. Ett negativt resultat kan också vara av betydelse, då man ofta kan reducera behandlingen och dess potentiella toxiska effekter. Även icke-infektiösa diagnoser kan bidra till att patienten får rätt behandling. 54 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 Några problembakterier Stenotrophomonas maltophilia vid långvarig neutropeni och upprepad behandling med bredspektrumantibiotika (13). Förstahandsbehandling är trimetoprim-sulfametoxazol i högdos, som för pneumocystispneumoni (PCP). Pneumonin är svårbehandlad och har hög mortalitet. Burkholderia cepacia förekommer framför allt hos patienter med bronkiektasier och cystisk fibros där kolonisering ökar risken för pneumoni efter lungtransplantation (2). Legionella. Legionellapneumoni har hög mortalitet och morbiditet hos immunsupprimerade om den inte behandlas tidigt (5). Bakterier ansamlas i vattenledningssystem eller i varmvattenberedare med för låg temperatur. Lokala utbrott har förekommit på sjukhus. Även personer med svalgpares utgör en riskgrupp. Legionellaantigen i urin påvisar Legionella pneumophila serotyp 1. För att säkerställa diagnosen tas prov från sputum/trakealsekret/BAL för PCR-teknik som täcker in övriga serotyper. Behandling ges med makrolid- eller kinolonpreparat i minst tre veckor. Pneumoni orsakad av mögelsvamp Högriskpatienter är de med långvarig och djup neutropeni vid akut leukemi, medfödd granulocyt- eller T-cellsdefekt, nedsatt T-cellsförsvar efter transplantation och långtidsbehandling med kortikosteroider i högdos, ofta i kombination med cytostatika (14,15). Vanligast är Aspergillus fumigatus där mortaliteten tidigare var upp mot 90 %, men har minskat till 35 – 57 % med nya läkemedel för behandling och profylax samt bättre diagnostik (15 –17). Patienten kan vara koloniserad före ankomst till sjukhuset och/eller smittas på sjukhuset när till exempel byggnadsarbete pågår, och utvecklar pneumoni när immunsuppressiv behandling sätts in om patienten inte isoleras eller får profylax. Det första symtomet är ofta B A KG R U N D S D O K U M E N TAT I O N feber, därefter tillkommer hosta och bröstsmärtor. För diagnos, som är svår, krävs ett histopatologiskt fynd eller mikrobiologiskt verifierade odlingar. CT-thoraxfynd som visar halo-sign eller så kallade crescentfynd, kan stärka misstanken om invasiv aspergillusinfektion. Inget av fynden är dock specifikt utan kan även ses vid bakteriell infektion eller annan mögelsvamp. Antigentester för diagnos av aspergilluspneumoni: Galaktomannantest är bäst utvärderat vid neutropeni (18). Flera falskt positiva korsreaktioner finns, till exempel betalaktamantibiotika (19). I första hand tas BAL-vätska för diagnostik (2,5,18,19). I kliniska prövningar vid neutropeni hos högriskpatienter har monitorering (ej enstaka prov) i blod med galaktomannan visat sig användbart för diagnos av aspergillusinfektion (18). Man fann att gränsvärde > 0,5 OD (ng/l) i BAL och blod indikerade sannolik aspergillusinfektion och i vissa studier mera specifikt vid > 1,0 OD (ng/l) (19–21). Hos organtransplanterade, andra patientgrupper och vid till exempel posakonazolprofylax är testen i blod osäkra och BAL ska göras för diagnostik. PCR-metodik finns för aspergillos men är för närvarande inte standardiserad. Ett positivt beta-D-glukantest i blod/BAL kan stödja aspergillosdiagnosen men är inte specifikt. Ett negativt galaktomannantest och beta-D-glukantest utesluter inte invasiv svampinfektion med den näst vanligaste mögelsvamparten mucormykos (Mucor, Rhizopus eller Rhizomucor). I vissa studier med vorikonazolprofylax har man sett ökad förekomst av mucormykos. Förstahandsbehandling vid aspergilluspneumoni är vorikonazol (15,16). Andrahandsval är liposomalt amfotericin B. Kombinationsbehandling med vorikonazol och echinocandin har visat gynnsamt resultat i en studie (20). Vid mucormykos ges liposomalt amfotericin B i högdos, > 5 mg/kg kroppsvikt. Posakonazol är ett alternativ. Vid svamppneumoni ska specialist tillfrågas. ”PCP förekommer framför allt när profylax inte getts eller har satts ut” Pneumocystispneumoni (PCP) Pneumocystis jirovecii orsakar pneumoni hos individer med nedsatt T-cellsförsvar (21,22). Friska personer koloniseras men utvecklar ingen sjukdom. Smittvägarna för P. jirovecii är inte helt klarlagda men svampen finns fritt i naturen och det har även beskrivits smitta mellan patienter på sjukhus (organtransplanterade). På lungröntgen ses oftast bilaterala, interstitiella infiltrat. Jämfört med hiv-infekterade har ickehiv-infekterade immunsupprimerade patienter oftast kortare insjuknandeperiod och färre symtom innan de utvecklar pneumoni. BAL-vätska visar färre antal organismer men kraftigare inflammatoriskt svar. Sjukdomsbilden är oftast svårare med högre frekvens av IVA-vård och respiratorbehandling samt en mortalitet på upp till 35 % i äldre studier, jämfört med cirka 7 % för hiv-infekterade (21,22). Innan profylax infördes var incidensen av PCP högst hos hjärt-lungtransplanterade och allogent SCT, 16 %, och hos övriga organtransplanterade 4 –11 % (3). Profylax med trimetoprim/sulfametoxazol är effektivt och genombrott är sällsynt. Med annan profylax är risken större. PCP ses nu mest när profylax inte getts eller har satts ut. Indikation för PCP-profylax har föreslagits när risken att insjukna är ≥ 3,5 % (21,22). Förstahandsbehandling är högdos trimetoprim/sulfametoxazol i 2 – 3 veckors tid med koncentrationsbestämning av trimetoprim eller sulfametoxazol. Om patienten är syrgaskrävande ges i de flesta fall tillägg av kortikosteroider, även om man inte påvisat samma effekt som vid hiv (5,21,22). Det finns även studier som visat sämre resultat. Alternativa behandlingar är intravenöst pentamidin, klindamycin med primakin och dapson med trimetoprim (21,22). Behandlingen är krävande och har toxiska effekter med bland annat njurpåverkan och neutropeni, varför det är viktigt att få rätt diagnos. I första hand tas BAL-vätska för diagnos med direktpåvisning av Pneumocystis jirovecii med PCR-teknik, helst kvantitativt, och immunfluorescens (IF) (23 –25). I andra hand tas inducerat sputumprov. Ett positivt beta-D-glukanvärde i serum kan stödja diagnosen men är inte specifikt. Ett negativt värde talar emot, men kan inte helt utesluta PCP (2,5). Efter behandling sätts profylax in, i första hand trimetoprim/sulfametoxazol. Cytomegalviruspneumoni CMV-pneumoni drabbar nästan enbart allogent stamcellstransplanterade (SCT), organtransplanterade och barn med grav, medfödd T-cellsdefekt (3,26,27). Däremot kan andra CMV-infektioner (reaktivering) ses vid behandling med alemtuzumab, antithymocytglobulin och fludarabin (28). Efter att antiviral profylax eller veckovis monitorering med PCR-CMV och tidig preemptiv behandling införts, är CMV-pneumoni ovanlig. Den kan dock förekomma efter utsatt profylax, kvarstående kronisk GVHD (graft-versushost disease) eller vid rejektionsbehandling. Kliniska symtom vid pneumoni är oftast ospecifika som torrhosta, dyspné och hypoxi medan feber kan saknas. För diagnos tas i första hand kvantitativ CMV-PCR i BAL, där ett positivt prov hos patient som har hög risk för CMV stärker diagnosen, men kliniska symtom, CT-thoraxfynd och eventuell detektion av andra agens måste vägas samman. Ett negativt CMV-PCR i BAL utesluter sannolikt CMVpneumoni. CMV-PCR-test i blod är ospecifikt och har ett mycket lågt prediktivt värde för CMV-pneumoni, även om ett negativt test minskar sannolikheten för diagnosen (28). Ett positivt immun-/histopatologiskt prov stärker diagnosen. Behandling ges i första hand med ganciklovir, alternativt natriumfoskarnet, och därefter för närvarande oftast med cidofovir samt ofta tillägg av immunglobuliner (29). I äldre studier var mortaliteten 70 % (3). En ny studie av allogent SCT visade en måttligt förbättrad överlevnad som berodde på antiviral behandling (30). Ingen säkerställd effekt sågs med tillägg av immunglobuliner. Riskfaktorer var lymfopeni, co-infektion med svamp eller bakterier och respiratorbehandling. Se även Läkemedelsverkets uppdaterade behandlingsrekommendation om farmakologisk behandling av cytomegalvirusinfektioner (31). I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 • 55 B A KG R U N D S D O K U M E N TAT I O N Luftvägsvirus De flesta infektioner med luftvägsvirus är samhällsförvärvade men smitta förekommer även på sjukhus (29). Diagnostik sker numera oftast med Multiplex-PCR med påvisande av 10 –21 olika luftvägsvirus från luftvägssekret. I första hand rekommenderas prov från BAL-vätska och i andra hand från NPH-sekret, men det är då inte säkert att samma fynd påvisas i de nedre som i de övre luftvägarna. Ökad risk för att drabbas av svår viruspneumoni har patienter med kraftigt nedsatt T-cellsförsvar, tidigt efter allogen SCT, kvarstående svår GVHD, lungtransplanterade och vid akut leukemibehandling (30). De vanligaste patogenerna är influensa A och B, RSV (respiratoriskt syncytialvirus), parainfluensa, metapneumo- och adenovirus som själva kan orsaka pneumonit eller bana väg för en sekundär bakteriell pneumoni (32). Risken för viruspneumoni beror även på egenskaperna hos luftvägsviruset som man drabbas av. Vid utbrottet 2009 av pandemiviruset A(H1N1) sågs en ökad förekomst av svår pneumoni hos friska individer vilket annars är ovanligt vid säsongsinfluensa. Däremot har immunsupprimerade en ökad risk för svår sjukdom även vid säsongsinfluensa (33). Tidig behandling rekommenderas därför mot influensa A och B. Om det inte föreligger resistens ges i första hand peroralt oseltamivir som absorberas bra. Alternativ är zanamivir som inhalation eller, vid svår pneumoni, som intravenös beredning som kan fås på licens (34,35). Eftersom immunsupprimerade har längre tids virusutsöndring ökar risken för resistensutveckling. Vid RSV-infektion ska helst tidig behandling sättas in: ribavirin till högriskgrupper redan vid övre luftvägssymtom, innan pneumoni utvecklats (36). Ribavirinbehandling mot parainfluensa rekommenderas inte. Adenoviruspneumonit är oftast en invasiv systeminfektion; behandlingsförsök har gjorts med cidofovir och immunglobuliner, samt brincidofovir som kan fås på licens och är mindre njurtoxiskt (34). Vid behandling ska expertis konsulteras. Detta talar för att immunsupprimerade patienter med andningssvikt inte ska förvägras intensivvård, inklusive respiratorvård, om de inte har en mycket dålig prognos på grund av sin underliggande sjukdom. Behandling När empirisk behandling sätts in ska förekomsten av multiresistenta bakterier på sjukhuset/avdelningen samt tidigare given antibiotika-, svamp- och antiviral behandling eller profylax vägas in. Detta innebär oftast bredspektrumantibiotika och vid allmänpåverkan ska även atypisk pneumoni täckas in (1). Hos högriskgrupperna ska även risken för opportunistiska infektioner vägas in när behandling ges. Infektionerna kan även vara polymikrobiella. Icke-infektiösa orsaker ska även utredas som biverkan av cytotoxiska läkemedel (metotrexatlunga), strålning, malignitet eller blödning. Specialist ska konsulteras vid svår pneumoni. Referenser 1. 2. 3. 4. 5. 6. 7. Mykobakterier För att minska risken för reaktivering av latent tuberkulos ska riskbedömning och, vid behov, screening med till exempel IGR A-test göras före insättande av immunsuppressiv behandling (2,5,35). Vid misstänkt infektion med Mycobacterium tuberculosis ska BAL göras innan behandling sätts in, efter beaktande av läkemedelsinteraktioner (35). Infektion med atypiska mykobakterier kan ske vid nedsatt T-cellsförsvar. Behandlingen är oftast långvarig med potentiellt toxiska läkemedel och man uppnår inte alltid utläkning (35). IVA-vård av immunsupprimerade patienter Tidigare inställning har varit att immunsupprimerade patienter inte ska vårdas på intensivvårdsavdelning eftersom de har dålig prognos. Nya data har dock visat en förbättrad överlevnad hos cancerpatienter på > 60 –70 % och även vid neutropeni med lunginfiltrat som respiratorbehandlats (5,37,38). Vid invasiv aspergillos var överlevnaden 33 %. 56 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 8. 9. 10. 11. 12. 13. 14. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416. Letourneau AR, Issa NC, Baden LR. Pneumonia in the immunocompromised host. Curr Opin Pulm Med. 2014;20:272–9. Kotloff RM, Ahya VN, Crawford SW. Pulmonary complications of solid organ and hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2004;170:22–48. Freifeld AG, Bow EJ, Sepkowitz K A, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52:e56–93. Maschmeyer G, Carratala J, Buchheidt D, et al. Diagnosis and antimicrobial therapy of lung infiltrates in febrile neutropenic patients (allogeneic SCT excluded): updated guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann Oncol. 2015;26:21–33. Heussel CP, Kauczor HU, Heussel G, et al. Early detection of pneumonia in febrile neutropenic patients: use of thin-section CT. AJR Am J Roentgenol. 1997;169:1347–53. Chellapandian D, Lehrnbecher T, Phillips B, et al. Bronchoalveolar lavage and lung biopsy in patients with cancer and hematopoietic stem-cell transplantation recipients: a systematic review and metaanalysis. J Clin Oncol. 2015;33:501–9. Boersma WG, Erjavec Z, van der Werf TS, et al. Bronchoscopic diagnosis of pulmonary infiltrates in granulocytopenic patients with hematologic malignancies: BAL versus PSB and PBAL. Respir Med. 2007;101:317–25. Mulabecirovic A, Gaulhofer P, Auner HW, et al. Pulmonary infiltrates in patients with haematologic malignancies: transbronchial lung biopsy increases the diagnostic yield with respect to neoplastic infiltrates and toxic pneumonitis. Ann Hematol. 2004;83:420–2. Rolston KV, Bodey GP, Safdar A. Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis. 2007;45:228–33. Ikegami T, Shirabe K, Matono R, et al. Etiologies, risk factors, and outcomes of bacterial pneumonia after living donor liver transplantation. Liver Transpl. 2012;18:1060–8. Giannella M, Munoz P, Alarcon JM, et al. Pneumonia in solid organ transplant recipients: a prospective multicenter study. Transpl Infect Dis. 2014;16:232–41. Cho SY, Lee DG, Choi SM, et al. Stenotrophomonas maltophilia bloodstream infection in patients with hematologic malignancies: a retrospective study and in vitro activities of antimicrobial combinations. BMC Infect Dis. 2015;15:69. Lortholary O, Gangneux JP, Sitbon K, et al. Epidemiological trends in invasive aspergillosis in France: the SAIF network (2005-2007). Clin Microbiol Infect. 2011;17:1882–9. B A KG R U N D S D O K U M E N TAT I O N 15. Gregg KS, Kauffman CA. Invasive Aspergillosis: Epidemiology, Clinical Aspects, and Treatment. Seminars in respiratory and critical care medicine. 2015;36:662–72. 16. Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347:408–15. 17. Cornely OA, Maertens J, Winston DJ, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007;356:348–59. 18. Miceli MH, Maertens J. Role of Non-Culture-Based Tests, with an Emphasis on Galactomannan Testing for the Diagnosis of Invasive Aspergillosis. Seminars in respiratory and critical care medicine. 2015;36:650–61. 19. Clancy CJ, Jaber R A, Leather HL, et al. Bronchoalveolar lavage galactomannan in diagnosis of invasive pulmonary aspergillosis among solid-organ transplant recipients. J Clin Microbiol. 2007;45(6):1759–65. 20. Marr K A, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann Intern Med. 2015;162:81–9. 21. Cooley L, Dendle C, Wolf J, et al. Consensus guidelines for diagnosis, prophylaxis and management of Pneumocystis jirovecii pneumonia in patients with haematological and solid malignancies, 2014. Intern Med J. 2014;44:1350–63. 22. Martin SI, Fishman JA, Practice ASTIDCo. Pneumocystis pneumonia in solid organ transplantation. Am J Transplant. 2013;13:272–9. 23. Muhlethaler K, Bogli-Stuber K, Wasmer S, et al. Quantitative PCR to diagnose Pneumocystis pneumonia in immunocompromised nonHIV patients. Eur Respir J. 2012;39:971–8. 24. Meyers JD, Pifer LL, Sale GE, et al. The value of Pneumocystis carinii antibody and antigen detection for diagnosis of Pneumocystis carinii pneumonia after marrow transplantation. Am Rev Respir Dis. 1979;120:1283–7. 25. Azoulay E, Bergeron A, Chevret S, et al. Polymerase chain reaction for diagnosing pneumocystis pneumonia in non-HIV immunocompromised patients with pulmonary infiltrates. Chest. 2009;135:655–61. 26. Solidoro P, Costa C, Libertucci D, et al. Tailored cytomegalovirus management in lung transplant recipient: a single-center experience. Transplant Proc. 2013;45:2736–40. 27. Travi G, Pergam SA. Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med. 2014;29:200–12. 28. Fassas AB, Bolanos-Meade J, Buddharaju LN, et al. Cytomegalovirus infection and non-neutropenic fever after autologous stem cell transplantation: high rates of reactivation in patients with multiple myeloma and lymphoma. Br J Haematol. 2001;112:237–41. 29. Ridgway JP, Bartlett AH, Garcia-Houchins S, et al. Influenza among afebrile and vaccinated healthcare workers. Clin Infect Dis. 2015;60:1591–5. 30. Renaud C, Campbell AP. Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients. Curr Opin Infect Dis. 2011;24:333–43. 31. Läkemedelsverket. Farmakologisk behandling av cytomegalvirusinfektioner – uppdaterad rekommendation. Information från Läkemedelsverket 2010:(21)2. 32. Hirsch HH, Martino R, Ward KN, et al. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis. 2013;56:258–66. 33. Folkhälsomyndigheten. Rekommendationer för profylax och behandling av influensa. 2015. Upplaga 3:1. Artikelnummer: 15052. 34. Lee YJ, Huang YT, Kim SJ, et al. Adenovirus Viremia in Adult CD34 Selected Hematopoietic Cell Transplant Recipients: Low Incidence and High Clinical Impact. Biol Blood Marrow Transplant. 2015 Aug 28. pii: S1083-8791(15)00548–0. [Epub ahead of print] 35. Kupeli E, Eyuboglu FO, Haberal M. Pulmonary infections in transplant recipients. Curr Opin Pulm Med. 2012;18:202–12. 36. Läkemedelsverket. Handläggning av RSV-infektioner. Information från Läkemedelsverket 2015:(26)5. 37. Azoulay E, Mokart D, Pene F, et al. Outcomes of critically ill patients with hematologic malignancies: prospective multicenter data from France and Belgium--a groupe de recherche respiratoire en reanimation onco-hematologique study. J Clin Oncol. 2013;31:2810–8. 38. Azoulay E, Pene F, Darmon M, et al. Managing critically Ill hematology patients: Time to think differently. Blood Rev. 2015 Apr 26. pii: S0268-960X(15)00030-2. [Epub ahead of print] Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 57 B A KG R U N D S D O K U M E N TAT I O N B A KG R U N D S D O K U M E N TAT I O N Vårdrelaterad pneumoni – pediatriska aspekter Margareta Eriksson, Jonas Berner, Sten-Erik Bergström Sammanfattning I detta bakgrundsdokument används begreppet vårdrelaterad pneumoni istället för sjukhusförvärvad pneumoni. VAP (ventilatorassocierad pneumoni) ses här som en undergrupp till vårdrelaterade pneumonier (se Inledning). Vårdrelaterad pneumoni är inte lika vanlig hos barn som hos vuxna. Den är dock den näst vanligaste nosokomiala infektionen efter misstänkt eller verifierad sepsis. Det är möjligt att det finns en underdiagnostik där barn med sepsis och lungröntgenförändringar ofta endast får diagnosen sepsis. Majoriteten av studier har fokuserat på pneumoni hos barn som respiratorvårdats (VAP). Rapporterad frekvens varierar stort beroende på vilken grupp av barn som inkluderats i olika studier. Frekvensen tycks dock ha minskat under senare år, förhoppningsvis till följd av förebyggande åtgärder. Hos barn nämns siffror på 3–10 % av respiratorvårdade barn eller 0,5–3 per 1 000 respiratorvårddagar. Inom neonatalogin är siffrorna ännu osäkrare med 5–6 per 1 000 respiratordagar hos extremprematurer. Riskfaktorer för vårdrelaterad pneumoni utgörs av ”syndromdiagnos”, steroidbehandling och reintubation. På neonatalavdelningar är låg födelsevikt, sondmatning och reintubation riskfaktorer. Diagnosen grundar sig på kliniska symtom, röntgenförändringar och mikrobiologi. Tolkning av röntgenbilder är speciellt svår hos små barn på grund av hög förekomst av atelektaser. Flera provtagningsmetoder har hög känslighet men låg specificitet. Bronkoalveolärt lavage (BAL) framhålls som den bästa metoden men i praktiken används ofta trakealaspirat (specificitet 40 %). Den vanligaste påvisade etiologin är S. aureus, Pseudomonas och H. influenzae. Ett framgångsrikt förebyggande arbete kräver en samsyn hos personal avseende en kombination av åtgärder såsom högläge, munvård, översyn av respiratorslangar, handhygien samt naturligtvis extubation snarast möjligt. I flertalet interventionsstudier har man använt sig av kuffad tub och ofta också syrahämmande medicinering. Inledning Sjukhusförvärvad pneumoni (hospital-acquired pneumonia, HAP) är i realiteten ovanlig hos barn som tillbringar så mycket tid som möjligt i hemmet. I detta bakgrundsdokument används därför istället begreppet vårdrelaterad pneumoni, vilken inte nödvändigtvis uppstår efter mer än 48 timmars inläggning, vilket annars är definitionen av HAP. Ventilatorassocierad pneumoni (VAP) ses i detta dokument som en undergrupp till vårdrelaterade pneumonier. Vårdrelaterad pneumoni är inte lika vanlig hos barn som hos vuxna. Bland nosokomiala infektioner hos barn är den 58 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 dock nummer två i ordningen efter verifierad eller suspekt sepsis (1,2). Som diskuteras nedan i avsnittet om Frekvens är sepsis en riskfaktor för vårdrelaterad pneumoni. Det är möjligt att man inte alltid sätter diagnosen vårdrelaterad pneumoni på barn som redan fått diagnosen nosokomial sepsis. Det är också möjligt att beteckningen vårdrelaterad kan vara svår att definiera hos barn när dessa har korta men upprepade vårdtillfällen på sjukhuset. Barn skiljer sig från vuxna genom specifika riskfaktorer, till exempel olika missbildningar och bronkopulmonell dysplasi (BPD) som utgörs av en lungskada i en ännu inte färdigutvecklad lunga. Andra väsentliga riskfaktorer är det omogna immunsystemet och att de yngsta barnen saknar immunologiskt minne, vilket gör dem mottagliga för primära virusinfektioner (3). Andra skillnader är barns annorlunda andningsmekanik och ökad atelektasbenägenhet. Detta medför en ökad risk för pneumoni efter kirurgi jämfört med äldre barn. Gastroesofageal reflux (GER), orsakad av omogenhet, är vanligt hos barn (85 %). Ett maximum ses vid 2–3 månaders ålder och sedan försvinner vanligtvis problemen vid 12–18 månaders ålder (4). Långvarig användning av matningssonder är ytterligare en bidragande orsak. Flertalet rapporter som diskuterar vårdrelaterad pneumoni hos barn beskriver pneumoni i samband med respiratorvård (VAP) (5–7). I en översiktsartikel från 2011 har man gjort en systematisk översikt täckande perioden 1947–2010 och samlat 48 artiklar från 265 studier, men även behövt komplettera med resultat från 61 artiklar avseende vuxna för att nå de slutsatser som presenteras nedan. Jämförelse och beräkning av frekvens försvåras av variationen i undersökta patientgrupper, som omfattas av en brännskadeavdelning i Sydafrika, en intensivvårdsavdelning med huvudsakligen planerad kardiologi eller mera blandade barnintensivvårdsavdelningar (5–7). Neonatalenheter utgör en speciell miljö, men miljön kan variera beroende på om enheten även vårdar postoperativ neonatal kirurgi och kardiologi eller enbart prematura barn. Frekvens I en metaanalys av nio studier har man för barnintensivvårdsavdelningar (BIVA) angett en VAP-frekvens på 3–10 % av respiratorvårdade barn eller 5–11,6 per 1 000 respiratordagar (7). Mera aktuella studier anger betydligt lägre frekvenser, speciellt de som haft för avsikt att även introducera och utvärdera preventiva åtgärder (8,9). Vid Astrid Lindgrens Barnsjukhus identifierades 14 barn under perioden 2011–2014, vilket motsvarar en incidens på 0,5–3,4 per 1 000 respiratordagar. En högre frekvens anges från neonatalavdelningar, såsom 20 % bland extremprematurer eller 4–6 per 1 000 respiratordagar (10,11). Incidensen på svenska neonatalavdelningar är oklar och kan till exempel inte utläsas säkert från Svenskt Neonatalt Kvalitetsregister. Som antytts ovan kan barn med verifierad sepsis missas då en samtidig pneumoni inte uppfattats som en egen diagnos. B A KG R U N D S D O K U M E N TAT I O N På Astrid Lindgrens Barnsjukhus kunde lungröntgenförändringar hittas hos 10 av 19 prematurer med verifierad sepsis (inte orsakade av lågpatogener såsom koagulasnegativa stafylokocker, KNS) under ett år, 2013–2014. Hos fem prematurer förelåg klara belägg för pneumoni (fyra fall av S. aureus och ett av grupp B-streptokocker, GBS). Ingen av dessa hade tilläggsdiagnos pneumoni. Diagnos Diagnosen baseras på kliniska symtom, såväl infektionsrelaterade (feber, leukocytos, leukopeni, CRP-stegring) som förändringar av sekret (purulent eller ökad mängd), kompletterat med röntgenförändringar och påvisande av etiologi med hjälp av mikrobiologi. ”Diagnosen grundar sig på kliniska symtom, röntgenförändringar och mikrobiologi” Kliniska symtom, speciellt infektionsrelaterade, har såväl dålig sensitivitet som specificitet och differentialdiagnosen mot sepsis kan vara svår. Bedömning av lungröntgenbilder är speciellt svår inom neonatalogin, vilket visades i en studie där man identifierat 37 barn som med kliniska kriterier fått diagnosen VAP. Diagnosen kunde endast verifieras hos sju (20 %) av barnen, huvudsakligen sedan radiologer granskat bilderna (12). CPIS (clinical pulmonary infection score) är inte anpassad till barn, men i USA har man utarbetat en klassifikation där man skiljer på barn under ett år och barn ett till tolv år samt barn över tolv år. Vid jämförelse är det inte så stora skillnader mellan dessa tre grupper, men hos barn under ett år lyfter man fram förändringar i gasutbyte samt förekomst av apnéer och hos yngre barn hosta och wheezing. Dessa symtom är värdefulla hos barn som inte respiratorvårdas, men vid VAP är det naturligtvis svårt att identifiera apnéer och hosta hos barn som respiratorvårdas (13). Riskfaktorer I många avseenden föreligger samma riskfaktorer hos barn som hos vuxna. I en metaanalys avseende barn med VAP från perioden 2000–2010 återfanns nio artiklar med sammanlagt 213 barn och 4 351 kontroller (14). I denna analys kunde man identifiera specifika riskfaktorer och lyfte fram dem som förekom i minst två studier, såsom ”syndromdiagnos” och steroidbehandling, men även reintubation, samtidig sepsis och tidigare antibiotikabehandling. Gastroesofageal reflux är som tidigare nämnts vanligt hos barn och var i denna analys inte generellt relaterat till VAP. Man kan dock identifiera speciella riskgrupper med kvarstående gastroesofageal reflux, såsom de som opererats för missbildningar eller har en CP-skada. Ketogen kost (för krampbehandling) som har ett högt fettinnehåll ökar risken för aspirationspneumoni. Baklofen som används hos barn med CP-skada har i en studie rapporterats ha en skyddande effekt (15). Neonatala riskfaktorer har analyserats i en annan metaanalys omfattande åtta studier, 370 fall och 1 071 kontroller (16). I denna översikt fann man tio riskfaktorer, bland annat låg födelsevikt, reintubation, enteral uppfödning samt, som väntat, vårdtidens längd. Mikrobiologi – provtagning Flertalet studier där olika metoder för mikrobiologisk provtagning har diskuterats och jämförts har utförts på vuxna (5,7). Hos små barn har vissa provtagningsmetoder sina begränsningar på grund av små strukturer. Möjlighet till provtagning skiljer sig också beroende på om barnet är intuberat (om frågeställningen gäller VAP) eller inte. I det senare fallet är oftast endast provtagning från nasofarynx möjlig. Denna provtagning kan hos det nästan alltid koloniserade barnet vara värdefull för att påvisa bärarskap av resistent bakterie (exempelvis pneumokocker eller H. influenzae) samt naturligtvis för att påvisa virus. ”Från 4–5 års ålder kan barn ofta förmås lämna sputa” Från 4–5 års ålder kan barn ofta förmås lämna sputa, eventuellt med hjälp av sjukgymnast, varvid prov kan erhållas genom så kallad ”inducerad sputa”. BAL kräver narkos och har därför endast använts i begränsad omfattning. Hos barn som är immunsupprimerade, undernutrierade, har bronkiektasier eller liknande underliggande tillstånd ökar risken att, oavsett orsak till sjukvård, dra på sig en komplicerande pneumoni. Hos dessa patientgrupper kan mer invasiv diagnostik som till exempel bronkoskopi övervägas tidigt i sjukdomsförloppet. Som nämnts har större delen av uppmärksamheten riktats mot diagnostik av VAP. I en nyligen genomförd studie där läkare på ett antal BIVA i USA tillfrågats hur de skulle agera i tre hypotetiska fall visade det sig att endast ett fåtal skulle utföra BAL-undersökning och att man i stället förlitade sig på TA (trakealaspirat) (17). Samma författare visade samtidigt att kolonisering av trakea ökar snabbt efter intubation och att det är omöjligt att skilja mellan infektion och kolonisering (18). Fynd i trakealodling påverkades av samtidig antibiotikabehandling, positiviteten minskade då från 64 % till 46 %. Färre positiva odlingar fick man om odlingen togs genom en separat kateter i stället för genom den kvarliggande katetern. På barnintensiven (BIVA) vid Astrid Lindgrens Barnsjukhus har man regelbundet tagit trakealodling på intuberade patienter och visat att cirka 50 % är koloniserade inom fyra dygn. Då man använde sig av konsekutiva odlingar kunde man konstatera stora variationer i bakteriefynd med åtföljande tolkningssvårigheter. Detta kan jämföras I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 59 B A KG R U N D S D O K U M E N TAT I O N med en studie där barn provtogs med två timmars mellanrum och reproducerbarhet kunde påvisas. Positivt prov förelåg i 93 % i båda proven, samma typning av bakterier i 86 % och samma mängd i 79 % (19). I samma prospektiva studier som omfattade 30 konsekutiva barn, varav 33 % med VAP, jämfördes kliniska kriterier, BAL och TA. Sammanfattningsvis fann man att kliniska symtom och TA hade hög känslighet (100 respektive 90 %) men låg specificitet (15 % respektive 40 %) (20). Även om barnet är intuberat är det inte alltid möjligt att utföra konventionell BAL då det inte går att föra ner ett bronkoskop om tuben är alltför liten. I dessa situationer kan det istället bli aktuellt att använda sig av så kallad ”blind BAL” (20). En orsak till falskt positiva odlingsfynd vid BAL är att bronkoskopet har kontaminerats av mikroorganismer som enbart växer i tuben. Framför allt hos immunsupprimerade barn kan denna kontaminering utgöra ett problem, varför man i dessa situationer gärna använder sig av skyddad borste som också kan utföras blint utan hjälp av bronkoskop. Att kombinera ”skyddad borste” med BAL ger mer information än de båda undersökningarna var för sig (5). Bakteriologiska fynd har studerats i nio pediatriska studier under perioden 1999–2009 (7). Man fann då Pseudomonas i en frekvens på 10–56 %, Klebsiella enterobacter 3–15 %, H. influenzae 9–10 % samt S. aureus 11–38 %. Hos enstaka barn fann man bakterier som Serratia, Stenotrophomonas och Acinetobacter. Mer än en bakterie förekommer hos upp till 30 %. Vid BIVA på Astrid Lindgrens Barnsjukhus fann man hos barn med verifierad VAP S. aureus hos 50 %, Pseudomonas hos 14 % och ingen växt hos 14 %. Hos enstaka barn fanns Klebsiella, Moraxella och H. influenzae. Virus är den vanligaste etiologin (85 %) vid samhällsförvärvad pneumoni hos barn. För 30 år sedan gällde samma sak för nosokomial pneumoni (21). Störst problem orsakades då liksom nu av respiratoriskt syncytialvirus (RSV) där hälften hade pneumoni. Parainfluensa, det virus som utsöndras längst, var i denna tidigare studie dock sällan förenat med pneumoni. Nyligen har man ånyo uppmärksammat hur nosokomial RSV-pneumoni är en signifikant bidragande orsak till mortalitet hos barn som vårdas på barnintensivvårdsavdelningar (22,23). I denna miljö förekommer även samtidig infektion med RSV och bakterier (H. influenzae och S. aureus) (24). Bland 352 barn med RSV fann man tecken till bakteriell infektion hos 36 %. Den bakteriella infektionen verifierades med feber, leukocytos, röntgenfynd och positiv TA-odling med > 105 bakterier. ”För att bedöma röntgenbilder rätt krävs stor erfarenhet, gärna av en barnradiolog” Förebyggande Förebyggande arbete är väsentligt då VAP är förenad med längre vårdtid, ökad mortalitet och högre kostnad. Två publicerade studier har genom att införa en kombination av åt60 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016 gärder (bundle) lyckats minska såväl VAT (ventilatorassocierad trakeobronkit) som VAP (8,9). Man lyckades minska VAT från 3,9 till 1,8 fall per 1 000 respiratordagar. I denna studie användes i stort sett samma definition för VAT och VAP, dock med undantaget att patienterna med VAT inte var röntgade. Man lyckades minska VAP från 5,6 till 0,3 fall per 1 000 respiratordagar. Faktorer som ingick i VAT- och VAP-förebyggande arbete utgjordes av högläge (30–45 graders lutning), munvård var fjärde timme, sugning av munhålan före sugning av endotrakealtub, handhygien och extubation så snart som möjligt. Andra faktorer som diskuterats som värdefulla är översyn av respiratorslangar med dränage och sugning med slutet sugsystem. I båda studierna ingick redan kuffad tub samt syrahämmande behandling som rutin. Den viktigaste faktorn för framgångsrikt införande av dessa åtgärder visade sig vara att införa en komponent i taget. Det var viktigt att personalen var delaktig och att man inte gick vidare med nästa åtgärd innan man var säker på att alla var överens om den just införda komponentens betydelse. Syrahämmare har studerats i en mindre studie, där man inte kunde påvisa någon skyddseffekt mot VAP med H2blockare, protonpumpshämmare eller sukralfat jämfört med en kontrollgrupp. Noteras bör dock att man i denna studie från Turkiet hade ett litet antal barn och mycket höga frekvenser för VAP (närmare 50 %) (25). Andra förebyggande åtgärder som diskuterats även på barn är SDD (selective digestive decontamination). En metaanalys av fyra studier omfattande 335 barn fann att VAP förekom hos 2,9 % i den aktiva gruppen och hos 9,7 % i den grupp som inte fått någon aktiv behandling (det vill säga tillägg av orala antibiotika till parenteralt cefotaxim), men man fann ingen skillnad i mortalitet (26). I en nyligen publicerad studie omfattande 150 barn fann man att tillförsel av probiotika minskade incidensen av VAP från 49 % till 7 %, men utan påvisbar skillnad i mortalitet (27). En hypotes är att vårdrelaterad pneumoni uppstår genom kolonisering av nedre luftvägar i form av trakeobronkit (VAT). VAT har då ansetts vara ett förstadium, även om det kan vara svårt att skilja mellan kolonisation och infektion. I en studie försökte man förebygga utveckling av VAT genom antibiotikabehandling. Antibiotika gavs till 150 av 1 616 barn som respiratorbehandlats i mer än 48 timmar (118 uppfyllde kriterierna för VAT). Det förelåg ingen skillnad mellan lång behandling, mer än sju dagar, eller kortare behandling vad gällde att förebygga VAT. Istället kunde man visa att lång behandlingstid ledde till kolonisation med resistenta bakterier (28). En sammanfattning av förebyggande åtgärder finns i Tabell I. Rekommendationer Rekommendationer måste naturligtvis anpassas till aktuell patientgrupp, undersökningsmöjligheter vad gäller assistans för erhållande av till exempel BAL-sköljvätska samt lokalt resistensmönster (5,7,29). • Diagnos ställs genom en kombination av kliniska symtom med hänsyn taget till normalvärden för åldern samt nedanstående fynd, vilket ger en relativt hög sensitivitet men en sämre specificitet. B A KG R U N D S D O K U M E N TAT I O N Forts. rekommendationer • • • För att bedöma röntgenbilder rätt krävs stor erfarenhet, gärna av en barnradiolog. För mikrobiologisk diagnostik föredras BAL, vilket i verkligheten dock oftast blir TA. Antibiotikabehandling bör anpassas till odlingsfynd. Det är viktigt att behandling sätts in så snart som möjligt, men att denna omprövas efter odlingssvar. Med hänsyn taget till fynd i flera studier bör åtminstone S. aureus, Pseudomonas samt H. influenzae täckas i empirisk behandling. Detta betyder att samma rekommendationer som hos vuxna bör kunna användas, dock med hänsyn taget till dos och doseringsintervall för aktuell grundsjukdom och ålder. Hos barn med svåra infektioner, där behandlingsalternativ saknas, kan behandling behöva ges även med preparat som saknar indikation för den aktuella åldersgruppen. Ibland kan man också behöva använda dosering som avviker från den enligt produktinformationen godkända. Se vidare Tabell II. Tabell I. Sammanfattning av åtgärder som förebygger vårdrelaterad pneumoni (8,9). Åtgärd Ansvarig målgrupp Höjd huvudända, minst 30 graders lutning Omvårdnad Munvård var fjärde timme Omvårdnad Tidig extubation Behandlande team Sugning i munhåla före sugning i endotrakealtub samt användning av slutet sugsystem Omvårdnad Handhygien (sprita händerna) före och efter patientkontakt Behandlande team Tabell II. Dosering vid behandling av vårdrelaterad pneumoni hos barn efter nyföddhetsperioden. Antibiotika Dosering1 Cefotaxim 30 mg/kg × 3 Klindamycin Piperacillin/tazobactam 10 mg/kg × 3–4 2 80 mg/10 mg/kg × 3–4 Ciprofloxacin 10–15 mg/kg × 2 Meropenem3 20(–30) mg/kg × 3 Vankomycin 10–20 mg/kg × 3–4 Linezolid4 10 mg/kg × 3 Ganciklovir 4 5 mg/kg × 2 Barn i åldrarna 3–12 år har ett högre clearance och kan behöva fler doser. Lägre doser kräver kortare doseringsintervall. Beträffande maximal antibiotikados hänvisas till produktresumé för respektive preparat. 2 Har indikation för barn ≥ 2 år. 3 Har indikation för barn ≥ 3 månader. 4 Saknar indikation för barn. 1 Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se I N F O R M AT I O N F R Å N L Ä K E M E D E L SV E R K E T 1: 2 016 • 61 B A KG R U N D S D O K U M E N TAT I O N Referenser 1. Grohskopf LA, Sinkowitz-Cochran RL, et al. A national point-prevalence survey of pediatric intensive care unit-acquired infections in the United States. J Pediatr. 2002;140:432–8. Raymond J, Aujard Y. Nosocomial infections in pediatric patients: a European, multicenter prospective study. European Study Group. Infect Control Hosp Epidemiol. 2000;21:260–3. Bradley JS. Considerations unique to pediatrics for clinical trial design in hospital-acquired pneumonia and ventilator-associated pneumonia. Clin Infect Dis. 2010;51 Suppl 1:S136–43. Solana Garcia MJ, Lopez-Herce Cid J, Sanchez Sanchez C. Gastroesophageal reflux in critically ill children: A review. ISRN Gastroenterol. 2013;2013:824320. Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and pediatric intensive care unit patients. Clin Microbiol Rev. 2007;20:409–25, table of contents. Rogers AD, Deal C, Argent AC, et al. Ventilator associated pneumonia in major paediatric burns. Burns. 2014;40:1141–8. Venkatachalam V, Hendley JO, Willson DF. The diagnostic dilemma of ventilator-associated pneumonia in critically ill children. Pediatr Crit Care Med. 2011;12:286–96. Bigham MT, Amato R, Bondurrant P, et al. Ventilator-associated pneumonia in the pediatric intensive care unit: characterizing the problem and implementing a sustainable solution. J Pediatr. 2009;154:582–7 e2. Muszynski JA, Sartori J, Steele L, et al. Multidisciplinary quality improvement initiative to reduce ventilator-associated tracheobronchitis in the PICU. Pediatr Crit Care Med. 2013;14:533–8. Apisarnthanarak A, Holzmann-Pazgal G, Hamvas A, et al. Ventilator-associated pneumonia in extremely preterm neonates in a neonatal intensive care unit: characteristics, risk factors, and outcomes. Pediatrics. 2003;112:1283–9. Yuan TM, Chen LH, Yu HM. Risk factors and outcomes for ventilator-associated pneumonia in neonatal intensive care unit patients. J Perinat Med. 2007;35:334–8. Cordero L, Ayers LW, Miller RR, et al. Surveillance of ventilatorassociated pneumonia in very-low-birth-weight infants. Am J Infect Control. 2002;30:32–9. Gupta S, Boville BM, Blanton R, et al. A multicentered prospective analysis of diagnosis, risk factors, and outcomes associated with pediatric ventilator-associated pneumonia*. Pediatr Crit Care Med. 2015;16:e65–73. Liu B, Li SQ, Zhang SM, et al. Risk factors of ventilator-associated pneumonia in pediatric intensive care unit: a systematic review and meta-analysis. J Thorac Dis. 2013;5:525–31. Li S, Shi S, Chen F, Lin J. The effects of baclofen for the treatment of gastroesophageal reflux disease: a meta-analysis of randomized controlled trials. Gastroenterol Res Pract. 2014;2014:307805. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. Tan B, Zhang F, Zhang X, et al. Risk factors for ventilator-associated pneumonia in the neonatal intensive care unit: a meta-analysis of observational studies. Eur J Pediatr. 2014;173:427–34. 17. Willson DF, Kirby A, Kicker JS. Respiratory secretion analyses in the evaluation of ventilator-associated pneumonia: a survey of current practice in pediatric critical care. Pediatr Crit Care Med. 2014;15:715–9. 18. Willson DF, Conaway M, Kelly R, Hendley JO. The lack of specificity of tracheal aspirates in the diagnosis of pulmonary infection in intubated children. Pediatr Crit Care Med. 2014;15:299–305. 19. Gauvin F, Lacroix J, Guertin MC, et al. Reproducibility of blind protected bronchoalveolar lavage in mechanically ventilated children. Am J Respir Crit Care Med. 2002;165:1618–23. 20. Gauvin F, Dassa C, Chaibou M, et al. Ventilator-associated pneumonia in intubated children: comparison of different diagnostic methods. Pediatr Crit Care Med. 2003;4:437–43. 21. Hall CB. Hospital-acquired pneumonia in children: the role of respiratory viruses. Semin Respir Infect. 1987;2:48–56. 22. Lee YI, Peng CC, Chiu NC, et al. Risk factors associated with death in patients with severe respiratory syncytial virus infection. J Microbiol Immunol Infect. 2014: S1684–1182(14)00204–7. 23. Thorburn K, Riordan A. Pulmonary bacterial coinfection in infants and children with viral respiratory infection. Expert Rev Anti Infect Ther. 2012;10:909–16. 24. Levin D, Tribuzio M, Green-Wrzesinki T, et al. Empiric antibiotics are justified for infants with respiratory syncytial virus lower respiratory tract infection presenting with respiratory failure: a prospective study and evidence review. Pediatr Crit Care Med. 2010;11:390–5. 25. Yildizdas D, Yapicioglu H, Yilmaz HL. Occurrence of ventilator-associated pneumonia in mechanically ventilated pediatric intensive care patients during stress ulcer prophylaxis with sucralfate, ranitidine, and omeprazole. J Crit Care. 2002;17:240–5. 26. Petros A, Silvestri L, Booth R, et al. Selective decontamination of the digestive tract in critically ill children: systematic review and metaanalysis. Pediatr Crit Care Med. 2013;14:89–97. 27. Banupriya B, Biswal N, Srinivasaraghavan R, et al. Probiotic prophylaxis to prevent ventilator associated pneumonia (VAP) in children on mechanical ventilation: an open-label randomized controlled trial. Intensive Care Med. 2015;41:677–85. 28. Tamma PD, Turnbull AE, Milstone AM, et al. Ventilator-associated tracheitis in children: does antibiotic duration matter? Clin Infect Dis. 2011;52:1324–31. 29. Morrow BM, Argent AC, Jeena PM, et al. Guideline for the diagnosis, prevention and treatment of paediatric ventilator-associated pneumonia. S Afr Med J. 2009;99:255–67. Samtliga bakgrundsdokumentationer finns publicerade på www.lakemedelsverket.se 62 • I N F O R M AT I O N F R Å N L Ä K E M E D E L S V E R K E T 1: 2 016