1(7) MAH / Lärarutbildningen 2007-06-05 KURSPLAN vid Lärarutbildningen, Malmö högskola Matematik för lärare III, 30 högskolepoäng Mathematics for teachers III, 30 credits Fastställande: ifylls av UTSAM Kod: NM135F Nivå: 61-90hp Fördjupning förhållande examensfordringarna: Huvudområde: iFristående kurs. till ifylls av UTSAM Förkunskapskrav: Särskild behörighet: Matematik för lärare II eller motsvarande Syfte Kursen syftar till att deltagarna utvecklar sina kunskaper om matematikdidaktik med fokus på integration med andra ämnen. Vidare syftar kursen till att utveckla en beredskap att i gymnasieskolan undervisa elever med svårigheter eller bristande motivation för matematik. Innehåll och kursens delkurser Kursen består av följande delkurser: Delkurs 1 Matematikdidaktik 6hp Delkurs 2 Matematiksvårigheter 4,5hp Delkurs 3 Matematik i samverkan med karaktärsämnen 4,5hp Delkurs 4 Aktionsforskning 15hp Delkurs 1 – Matematikdidaktik 6hp Lärandemål i delkurs 1 Efter genomgången delkurs ska studenten kunna redogöra för olika möjligheter att genomföra en problemorienterad och en för elever förståelseinriktad matematikundervisning beskriva teorier om undervisning och hur de kan tillämpas i matematikundervisningen problematisera hur matematiska begrepp kan introduceras och bearbetas inom matematikundervisningen 2(7) MAH / Lärarutbildningen KURSPLAN använda och analysera IKT-hjälpmedel Formerna för bedömning av studenternas prestationer i delkurs 1 Examinationen innehåller både gruppuppgifter och individuella uppgifter som redovisas på lärplattformen. Gruppuppgifter: Diskussioner kring undervisningsmetoder och framtagande av en planering som baserar sig på en eller flera undervisningsmetoder. Individuella inlämningar: Skriftlig reflektion utifrån anvisningar gällande undersökning som beskriver ett speciellt undervisningssätt i matematik. Genomgång av artiklar utifrån matematikens didaktik som avslutas med en skriftlig sammanfattning av en valfri artikel. Skriftlig analys av egen undervisning utifrån tankar kring konstruktivismen och relevanta forskningsartiklar. Analys av en matematikdidaktisk avhandling och skriva en reflekterande läslogg enligt anvisning. Skriftlig bemötande av en annan students läslogg gällande avhandling. Övergripande bedöms studentens medverkan till sin egen och studiekamraternas utveckling. God språkbehandling och presentationsform krävs vid samtliga redovisningar. Innehåll Kursen behandlar ämnesteori och knyter den till skolans undervisning för att bygga upp en fördjupad didaktisk kompetens. Avhandlingar i matematikdidaktik studeras och tillämpningar praktiseras, om möjlighet finns, på fältet. Teori och praktik förenas med diskussion och reflektion. Exempel på övergripande synsätt på undervisning som behandlas är konstruktivism och sociokulturell teori samt även undervisningsmetoder i form av begreppskartor, "contrastive teaching", metakognition, kooperativ inlärning, suggestopedi och PBL. Vidare bearbetas och prövas hur viktiga matematiska begrepp introduceras och befästes bl.a. genom att studenterna blir medvetna om sitt eget lärande. Delkurs 2 – Matematiksvårigheter 4,5 hp Lärandemål i delkurs 2 Efter genomgången delkurs ska studenten kunna redogöra för hur man som lärare på ett förebyggande sätt kan bemöta elever, som upplevs ha matematiksvårigheter, samt för betydelsen av elevernas attityder till matematik använda sig av matematik som ett språk och beskriva hur matematik utvecklas genom det talade språket 2 3(7) MAH / Lärarutbildningen KURSPLAN beskriva hur arbete med problemlösning kan genomföras på ett utvecklande sätt utforma undervisning med stöd av styrdokument, åtgärdsprogram, individuella studieplaner samt genomföra utvecklingssamtal planera undervisning utifrån vad som är baskunnande i matematik och göra bedömningar som grundas på hur elever tänker inom matematik analysera och åtgärda elevers bristande begreppsförståelse Formerna för bedömning av studenternas prestationer i delkurs 2 Examinationen innehåller både gruppuppgifter och individuella uppgifter som redovisas på lärplattformen. Gruppuppgifter: Diskussioner som handlar dels om verklighet visioner kring elever med matematiksvårigheter och orsakerna till svårigheterna, dels om baskunnande i matematik med utgångspunkt från litteratur. Individuella inlämningar: En uppgift handlar om språkets betydelse för matematisk förståelse. I en annan uppgift undersöks hur arbete med problemlösning kan underlättas och bli meningsfullt. Studenterna genomför även problemlösningsuppgifter med elever. I en tredje uppgift skaffar studenterna sig kunskap om styrdokument som berör åtgärder, utvecklingsplaner o.d., både på riksnivå och på lokal nivå. De delar med sig av sina erfarenheter till studiekamraterna såväl muntligt som skriftligt. Till uppgifterna finns litteratur att studera. Övergripande bedöms studentens medverkan till sin egen och studiekamraternas utveckling. God språkbehandling och presentationsform krävs vid samtliga redovisningar. Innehåll Delkursen behandlar viktiga faser i elevers matematikutveckling och metoder för att upptäcka eventuella brister. Stor vikt läggs vid förebyggande åtgärder som syftar till att mildra eller eliminera problem i mötet med matematikens språk och symboler, samt hur elever kan öka sitt självförtroende. Genom att studera språkets betydelse behandlas hur elever kan stimuleras att arbeta matematiskt. Andra områden som delkursen behandlar är och problemlösning samt skolförordningar när det gäller särskilt stöd och åtgärdsprogram. 3 4(7) MAH / Lärarutbildningen KURSPLAN Delkurs 3 – Matematik i samverkan med karaktärsämnen 4,5 hp Lärandemål i delkurs 3 Efter genomgången delkurs ska studenten kunna tolka, beskriva och analysera den matematik som förekommer i vardagliga situationer, yrkesliv och i andra ämnen. analysera och detaljplanera ett matematikområde i aktuell gymnasiekurs där matematiken är ”infärgad” och programanpassad enligt läroplanens intentioner. ta ställning till olika arbetssätt och arbetsformer utifrån ett genusperspektiv. Formerna för bedömning av studenternas prestationer i delkurs 3 Examinationen innehåller två mindre individuella uppgifter som redovisas på lärplattformen samt en tredje större uppgift som redovisas muntligt. En uppgift utgörs av ett litteraturseminarium runt matematik som ett kärnämne. En annan uppgift består av att söka valfri forskningsrapport kring området ” samverkan matematik och karaktärsämne”. Ur rapporten görs ett urval med motivering och analys. Ovan två uppgifter redovisas på lärplattformen. Den tredje och större uppgiften utgörs av en ”infärgad planering”. Denna uppgift kan genoföras antingen genom att; begrepp och områden i karaktärsämnet identifieras och matematikinnehållet i karaktärsämnet presenteras eller genom att man utgår från ett/några matematikområden och ser var det/dessa återfinns i karaktärsämnet. God språkbehandling och presentationsform krävs vid samtliga redovisningar. Innehåll I delkursen producerar studenten en detaljerad programanpassad planering av ett matematikmoment inom kurs A på gymnasieskolan. Kursplanens mål och innehåll för det valda matematikområdet analyseras och jämförs med karaktärsämnets kursplan. I kursen ingår att deltagarna auskulterar på lektioner där det bedrivs undervisning i olika yrkesämnen. 4 5(7) MAH / Lärarutbildningen KURSPLAN Delkurs 4 – Aktionsforskning karaktärsämnen 15 hp kring samverkan matematik och Lärandemål i delkurs 4 Efter genomgången delkurs ska studenten kunna analysera komplexiteten i lärarrollen och reflektera om hur denna kan utvecklas. reflektera över och ta ställning till olika kunskaper om teorier och forskningsmetoder inom aktionsforskning. observera, problematisera, analysera och utvärdera undervisningsprocesser i klassrummet. utforma en vetenskaplig text, i form av aktionsforskning inom det matematikdidaktiska området. Formerna för bedömning av studenternas prestationer i delkurs 4 Examinationen består av ett granskningsseminarium av aktionsforskningen. I granskningsseminariet försvaras det egna arbetet och en opposition av ett annat arbete genomförs. God språkbehandling och presentationsform krävs. Innehåll I delkursen genomför studenten en aktionsforskning i klassrummet. I denna utvecklas och förändras en situation och kunskap inskaffas om hur förändringen går till. Aktionsforskningen försvaras i ett granskningsseminarium. Arbetsformer Utbildningen är nätbaserad och kräver aktivt deltagande av studenterna på nätbaserad plattform. Arbetet genomförs såväl individuellt som i grupp. I kursen ingår även träffar på Lärarutbildningen med föreläsningar och seminarier. Kursen innehåller varierande arbetsformer. Dessa kan utgöras av litteraturseminarier med redovisning, elevundersökningar med rapportskrivning, utvecklande av undervisningsstrategier, gruppdiskussioner på nät-plattformen. Arbetsformerna har utgångspunkt från kursens syfte och lärandemål och utvecklas i samverkan mellan studerande och kursledare. Betygsgrader Som betygsgrader används något av betygen Underkänt, Godkänt eller Väl godkänt 5 6(7) MAH / Lärarutbildningen KURSPLAN Litteratur och övriga läromedel Obligatorisk litteratur Bell, Judith (1995). Introduktion till forskningsmetodik. (150 s) Engström Arne (red)(1998). Matematik och reflektion. Lund: Studentlitteratur (152s) Grevholm, Barbro (red)(2001). Matematikdidaktik i Norden. Lund: Studentlitteratur (350s) Kosnik,Clare (2000). The Action Research Process. University of Toronto (20s) Malmer, Gudrun (1999). Bra matematik för alla. Lund: Studentlitteratur (227s) Myndigheten för skolutveckling (2003). Baskunnande i matematik (112s) Möllehed, Ebbe(2001). Problemlösning i matematik. Lärarhögskolan i Malmö (200s) Nämnaren Tema, Matematik - ett kärnämne (1995). Mölndal: Institutionen för ämnesdidaktik, Göteborgs universitet. (170s) Skolverket (2003): Analysschema i matematik för skolår 6-9 (62s) Skolverkets rapport Nationella kvalitetsgranskningar 2001-2002: Lusten att lära - med fokus på matematik (46 s) Sterner, Görel & Lundberg, Ingvar (2002). Läs och skrivsvårigheter och lärande i matematik, NCM-rapport. Göteborg: NCM, Göteborgs universitet (203s) Kompendium Matematik för lärare 41-60 poäng - Artiklar till delkurs 1 Matematikdidaktik Tidskriften Nämnaren Stencilmaterial och länkar till Internet Dessutom tillkommer Valfri litteratur som stödjer den undervisningsmetod studenten ska fördjupa sig i (ca 300 s) Forskningsartiklar (ca 200s) Kursplaner Läroböcker i gymnasieskolans karaktärsämnen Valbar litteratur Boaler, Jo (1997). Experiencing School Mathematics. Teaching styles, sex and setting. Open University Press (150s) Dahl, Kristin (1991). Den fantastiska matematiken. Fischer o Co (219s) Emanuelssom, Göran & Wallby, Karin & Johansson, Bengt & Ryding, Ronny (red.) (1996). Nämnaren Tema: Matematik ett kommunikationsämne. Mölndal: Institutionen för ämnesdidaktik, Göteborgs universitet. Engström, Arne:(1997). Reflektivt tänkande i matematik - om elevers konstruktioner av bråk. Almqvist&Wiksell Gran, Bertil (1998). Matematik på elevens villkor. Lund: Studentlitteratur (210s) Ljungblad, Ann-Louise (2001). Matematisk medvetenhet. Varberg: Argument (260 s) Löwing, Madeleine & Kilborn, Wiggo (2002). Baskunskaper i matematik för skola, hem och samhälle. Lund: Studentlitteratur (40s) Magne, Olof (1998). Att lyckas med matematik i grundskolan. Lund: Studentlitteratur (270s) Nilsson, Hans (1999). Upptäck din förmåga att lösa problem. Bokförlaget Kritan (150s) Prashning, Barbara: Kraften i mångfalden. Andragogerna 1999 (340s) 6 7(7) MAH / Lärarutbildningen KURSPLAN Kursvärdering Studenterna får inflytande i undervisningen genom att det kontinuerligt under pågående kurs ges möjlighet till återkoppling och reflektion över kursens innehåll och genomförande. Kursen avslutas med en individuell skriftlig kursvärdering utifrån kursens syfte och mål. Dessa kursvärderingar ligger till grund för den återkoppling kursledaren och kursdeltagarna gör i anslutning till kursens avslutning. Övrigt För övriga föreskrifter se Utbildningsprogram för lärarexamen. Bilaga till kursplan: Malmö högskolas perspektiv Genus, Miljö samt Migration och Etnicitet Vid diskussioner om lärandets villkor lyfts den grundläggande frågan fram om det finns generella skillnader mellan manligt och kvinnligt sätt att arbeta med och att lära sig matematik. Deltagarna uppmärksammas på genusperspektivet i hur matematisk text och matematiska uppgifter framställer det manliga respektive det kvinnliga. Vid val av arbetssätt och arbetsformer inom de olika matematikmomenten beaktas genusperspektivet så att traditionella karaktärsämnesval kan förändras på sikt. 7