Lars Madej [email protected] Bråting, Sollervall, Stadler: Geometri för lärare Löwing: Grundläggande geometri Kiselman: Matematiktermer för skolan http://www2.math.uu.se/~kiselman/termer12.pdf Föreläsningar Lektioner/Seminarier Från grekiskans ◦ Geo = jord ◦ Metria = mäta Geometri = ”jordmätning” Geometri kan beskrivas som studier av rumsliga samband, dvs vilka egenskaper figurer har i ett rum. Elementa är ett verk som sammanfattar den grekiska antikens matematik. Elementa är skriven av bland andra Euklides (300 f Kr). Elementa består av 13 böcker som är indelade i plangeometri (bok I-VI), aritmetik (bok VII-IX) inkommensurabla storheter (bok X), rymdgeometri (bok XI-XIII). Näst efter Bibeln är Elementa den mest spridda boken i Västerlandet. Euklides Elementa, 23 definitioner En punkt är något som inte kan delas En linje är längd utan bredd En linjes ändar är punkter En rät linje är en linje som ligger jämnt mellan punkterna på sig själv ◦ En yta har längd och bredd, men saknar tjocklek ◦ ◦ ◦ ◦ En linje? ◦ Vinkel är den lutning som två linjer, vilka ligger i samma plan, men inte ligger i en rät linje, har till varandra ◦ När en rät linje stående på en annan rät linje gör vinklarna på båda sidor om denna lika stora kallas var och en av dessa vinklar en rät vinkel ◦ En trubbig vinkel är en vinkel större än en rät vinkel OBS! Skrivet fritt från minnet och inte ordagrant vad som står i översättningen av Elementa. Det är möjligt att dra en sträcka från en punkt till en annan En sträcka kan godtyckligt förlängas till en längre sträcka Kring varje punkt kan beskrivas en cirkel med given radie Alla räta vinklar är lika med varandra Om en rät linje skär två räta linjer och bildar inre vinklar på samma sida, vars summa är mindre än två räta vinklar, så kommer de två räta linjerna, om de utdras obegränsat, att skära varandra på den sida de två inre vinklarna ligger Konstruktion av en liksidig triangel på en given ändlig rät linje C AA B Nu lämnar vi Antiken! Vi kommer till att börja med inte prata om grader, nygrader eller radianer (eller något annat vinkelmått). Begrepp: ◦ ◦ ◦ ◦ ◦ Rät vinkel Trubbig vinkel Spetsig vinkel Halvt varv (= två räta vinklar) Helt varv (= fyra räta vinklar) Elevexempel från Gunneboskolan Två trianglar med vinkelsumma ett halvt varv Tillsammans blir vinklarna ett helt varv! Vilken vinkelsumma (uttryckt i hela och halva varv) har en A. Triangel? Svar: ½ varv B. Fyrhörning? Svar: 1 varv C. Femhörning? D. Sexhörning? E. Tiohörning? F. N-hörning? (Dvs beskriv med ord hur du kan räkna fram vinkelsumman om du vet antalet hörn) A. B. C. D. E. Vad är en: Likbent triangel? Liksidig triangel? Rätvinklig triangel? Trubbvinklig triangel? Spetsvinklig triangel? Är en liksidig triangel alltid spetsvinklig? Är en spetsvinklig triangel alltid liksidig? Är en likbent triangel alltid rätvinklig? Kan en trubbvinklig triangel vara likbent? Kan en triangel ha två spetsiga vinklar? Kan en triangel ha två trubbiga vinklar? Är vinkelsumman i en triangel ett halvt varv? Euklidisk geometri: Postulat 1 Det är möjligt att dra EXAKT en sträcka från en punkt till en annan Gäller detta postulat på ett klot? Sadelyta. Bilden hämtad från http://sv.wikipedia.org/wiki/Paraboloid Fungerar inte den geometri vi lär oss? På en begränsad del av ett klot (dvs lokalt) blir skillnaden så liten att geometrin är nästan euklidisk Alltså räknar vi som om jorden vore platt! Hur kan vi övertyga oss själva och våra elever om att jorden verkligen är klotformat?